423 resultados para Soot combustion mechanism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we report the synthesis of barium zirconate, BaZrO3, (BZ) nanotubes fabricated by the modified sol-gel method within the nanochannels of anodic aluminum oxide (AAO) templates. The morphology, structure, and composition of as prepared nanotubes were characterized by means of X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM), selected-area electron diffraction ( SAED), high resolution TEM (HRTEM) and energy-dispersive X-ray spectroscopy (EDX). The results of XRD and SAED indicated that postannealed (at 650 degrees C for 1 h) BZ nanotubes (BZNTs) exhibited a polycrystalline cubic perovskite crystal structure. SEM and TEM analysis revealed that BZNTs possessed a uniform length and diameter (similar to 200 nm) and the thickness of the wall of the BZNTs was about 20 nm. Y-junctions, multiple branching and typical T-junctions were also observed in some BZNTs. EDX analysis demonstrated that stoichiometric BaZrO3 was formed. HRTEM image confirmed that the obtained BZNTs were composed of nanoparticles in the range of 5-10 nm. The possible formation mechanism of BZNTs was discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two new neutral copper-azido polymers [Cu-3(N-3)(6)(tmen)(2)](n)(1)and [Cu-6(N-3)(12)(deen)(2)](n) (2) [tmen = N,N,N, N-tetramethylethylenediamine and deen = N,N-diethylethylenediamine] have been synthesized by using lower molar equivalents of the chelating diamine ligands with Cu(NO3)(2)center dot 3H(2)O and an excess of NaN3. The single crystal X-ray structure shows that in the basic unit of the 1D complex 1, the three Cu-II ions are linked by double end-on azido bridges with Cu-N-EO-Cu angles on both sides of the magnetic exchange critical angle of 108 degrees. Complex 2 is a 3D framework of a basic u-6 cluster. Cryomagnetic susceptibility measurements over a wide range of temperature exhibit dominant ferromagnetic behavior in both the complexes. Density functional theory calculations (B3LYP functional) have been performed on the trinuclear unit to provide a qualitative theoretical interpretation of the overall ferromagnetic behavior shown by the complex 1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neutral and cationic organometallic ruthenium(II) piano stool complexes of the type [(eta(6)-cymene)R-uCl(X)(Y)] (complexes R1-R8) has been synthesized and characterized. In cationic complexes, X, Y is either a eta(2) phosphorus ligand such as 1,1-bis(diphenylphosphino)methane (DPPM) and 1,2-bis(diphenylphosphino)ethane (DPPE) or partially oxidized ligands such as 1,2-bis(diphenylphosphino)methane monooxide (DPPMO) and 1,2-bis(diphenylphosphino)ethane monooxide (DPPEO) which are strong hydrogen bond acceptors. In neutral complexes. X is chloride and Y is a monodentate phosphorous donor. Complexes with DPPM and DPPMO ligands ([(eta(6)-cymene)Ru(eta(2)-DPPM)Cl]PF6 (R2), [(eta(6)-cymene)Ru(eta(2)-DPPMO)Cl]PF6 (R3), [(eta(6)-cymene)Ru(eta(1)-DPPM)Cl-2] (R5) and [(eta(6)-cymene)Ru(eta(1)-DPPMO)Cl-2] (R6) show good cytotoxicity. Growth inhibition study of several human cancer cell lines by these complexes has been carried out. Mechanistic studies for R5 and R6 show that inhibition of cancer cell growth involves both cell cycle arrest and apoptosis induction. Using an apoptosis PCR array, we identified the sets of antiapoptotic genes that were down regulated and pro-apoptotic genes that were up regulated. These complexes were also found to be potent metastasis inhibitors as they prevented cell invasion through matrigel. The complexes were shown to bind DNA in a non intercalative fashion and cause unwinding of plasmid DNA in cell-free medium by competitive ethidium bromide binding, viscosity measurements, thermal denaturation and gel mobility shift assays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we have tried to emphasize the connection between mycobacterial growth and regulation of gene expression. Utilization of multiple carbon sources and diauxic growth helps bacteria to regulate gene expression at an optimum level so that the inhospitable conditions encountered during nutrient depletion can be circumvented. These aspects will be discussed with respect to mycobacterial growth in subsequent sections. Identification and characterization of genes induced under such conditions is helpful to understand the physiology of the bacterium. Although it is necessary to compare the total expression profile of proteins as they transit from vegetative growth to stationary phase, at times a lot of insights can be deciphered from the expression pattern of one or two proteins. We have compared the protein expression and sigma factor selectivity of two such proteins in M. smegmatis to understand the differential regulation of genes playing diverse function in the same species. Some newer insights on the structure and function of one of the Dps proteins are also explained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural basis for the homotropic inhibition of pantothenate synthetase by the substrate pantoate was investigated by X-ray crystallography and high-resolution NMR spectroscopic methods. The tertiary structure of the dimeric N-terminal domain of Escherichia coli pantothenate synthetase, determined by X-ray crystallography to a resolution of 1.7 Å, showed a second molecule of pantoate bound in the ATP-binding pocket. Pantoate binding to the ATP-binding site induced large changes in structure, mainly for backbone and side chain atoms of residues in the ATP binding HXGH(34–37) motif. Sequence-specific NMR resonance assignments and solution secondary structure of the dimeric N-terminal domain, obtained using samples enriched in 2H, 13C, and 15N, indicated that the secondary structural elements were conserved in solution. Nitrogen-15 edited two-dimensional solution NMR chemical shift mapping experiments revealed that pantoate, at 10 mm, bound at these two independent sites. The solution NMR studies unambiguously demonstrated that ATP stoichiometrically displaced pantoate from the ATP-binding site. All NMR and X-ray studies were conducted at substrate concentrations used for enzymatic characterization of pantothenate synthetase from different sources [Jonczyk R & Genschel U (2006) J Biol Chem 281, 37435–37446]. As pantoate binding to its canonical site is structurally conserved, these results demonstrate that the observed homotropic effects of pantoate on pantothenate biosynthesis are caused by competitive binding of this substrate to the ATP-binding site. The results presented here have implications for the design and development of potential antibacterial and herbicidal agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The room temperature (RT) tensile behaviour of a free-standing high activity Pt-aluminide bond coat has been evaluated by microtensile testing technique. The coating had a typical three-layer microstructure. The stress-strain plot for the free-standing coating was linear, indicating the coating to be brittle at RT. Different fracture features were observed across the coating layers, namely quasi-cleavage in the outer layer and inner interdiffusion zone, and cleavage in the intermediate layer. By employing interrupted tensile test and observing the cross-sectional microstructure of the tested specimens, it was determined that failure of the microtensile samples occurred by the initiation of a single crack in the intermediate layer of the coating and its subsequent inside-out propagation. Such a mechanism of failure has been explained in terms of the fracture features observed across the sample thickness. This mechanism of failure is consistent with fracture toughness values of the individual coating layers. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we consider a decentralized supply chain formation problem for linear multi-echelon supply chains when the managers of the individual echelons are autonomous, rational, and intelligent. At each echelon, there is a choice of service providers and the specific problem we solve is that of determining a cost-optimal mix of service providers so as to achieve a desired level of end-to-end delivery performance. The problem can be broken up into two sub-problems following a mechanism design approach: (1) Design of an incentive compatible mechanism to elicit the true cost functions from the echelon managers; (2) Formulation and solution of an appropriate optimization problem using the true cost information. In this paper we propose a novel Bayesian incentive compatible mechanism for eliciting the true cost functions. This improves upon existing solutions in the literature which are all based on the classical Vickrey-Clarke-Groves mechanisms, requiring significant incentives to be paid to the echelon managers for achieving dominant strategy incentive compatibility. The proposed solution, which we call SCF-BIC (Supply Chain Formation with Bayesian Incentive Compatibility), significantly reduces the cost of supply chain formation. We illustrate the efficacy of the proposed methodology using the example of a three echelon manufacturing supply chain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acyl carrier protein (ACP) plays a central role in fatty acid biosynthesis. However, the molecular machinery that mediates its function is not yet fully understood. Therefore, structural studies were carried out on the acyl-ACP intermediates of Plasmodium falciparum using NMR as a spectroscopic probe. Chemical shift perturbation studies put forth a new picture of the interaction of ACP molecule with the acyl chain, namely, the hydrophobic core can protect up to 12 carbon units, and additional carbons protrude out from the top of the hydrophobic cavity. The latter hypothesis stems from chemical shift changes observed in C-alpha and C-beta of Ser-37 in tetradecanoyl-ACP. C-13, N-15-Double-filtered nuclear Overhauser effect (NOE) spectroscopy experiments further substantiate the concept; in octanoyl (C-8)- and dodecanoyl (C-12)-ACP, a long range NOE is observed within the phosphopantetheine arm, suggesting an arch-like conformation. This NOE is nearly invisible in tetradecanoyl (C-14)-ACP, indicating a change in conformation of the prosthetic group. Furthermore, the present study provides insights into the molecular mechanism of ACP expansion, as revealed from a unique side chain-to-backbone hydrogen bond between two fairly conserved residues, Ile-55 HN and Glu-48 O. The backbone amide of Ile-55 HN reports a pK(a) value for the carboxylate, similar to 1.9 pH units higher than model compound value, suggesting strong electrostatic repulsion between helix II and helix III. Charge-charge repulsion between the helices in combination with thrust from inside due to acyl chain would energetically favor the separation of the two helices. Helix III has fewer structural restraints and, hence, undergoes major conformational change without altering the overall-fold of P. falciparum ACP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transthyretin (TTR), a tetrameric thyroxine (T4) carrier protein, is associated with a variety of amyloid diseases. In this study, we explore the potential of biphenyl ethers (BPE), which are shown to interact with a high affinity to its T4 binding site thereby preventing its aggregation and fibrillogenesis. They prevent fibrillogenesis by stabilizing the tetrameric ground state of transthyretin. Additionally, we identify two new structural templates (2-(5-mercapto-[1,3,4]oxadiazol-2-yl)-phenol and 2,3,6-trichloro-N-(4H-[1,2,4]triazol-3-yl) represented as compounds 11 and 12, respectively, throughout the manuscript) exhibiting the ability to arrest TTR amyloidosis. The dissociation constants for the binding of BPEs and compound 11 and 12 to TTR correlate with their efficacies of inhibiting amyloidosis. They also have the ability to inhibit the elongation of intermediate fibrils as well as show nearly complete (> 90%) disruption of the preformed fibrils. The present study thus establishes biphenyl ethers and compounds 11 and 12 as very potent inhibitors of TTR fibrillization and inducible cytotoxicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

EcoP15I is a type III restriction enzyme that requires two recognition sites in a defined orientation separated by up to 3.5 kbp to efficiently cleave DNA. The mechanism through which site- bound EcoP15I enzymes communicate between the two sites is unclear. Here, we use atomic force microscopy to study EcoP15I-DNA pre-cleavage complexes. From the number and size distribution of loops formed, we conclude that the loops observed do not result from translocation, but are instead formed by a contact between site- bound EcoP15I and a nonspecific region of DNA. This conclusion is confirmed by a theoretical polymer model. It is further shown that translocation must play some role, because when translocation is blocked by a Lac repressor protein, DNA cleavage is similarly blocked. On the basis of these results, we present a model for restriction by type III restriction enzymes and highlight the similarities between this and other classes of restriction enzymes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the present study is to develop the reaction mechanism and kinetics of photoreduction of NO by CO. For this purpose, the reactions were conducted in the presence of Pd-ion-substituted nano-TiO2, Ti1-xPdxO2-delta, which was synthesized via a solution combustion method. The photocatalytic activity was investigated with unsubstituted TiO2, 1% Pd/TiO2(imp), and Ti1-xPdxO2-delta (where x = 0.05-0.3). No appreciable NO conversion was observed over unsubstituted TiO2, although, despite competitive adsorption of NO and CO on the Pd2+ sites, there was a significant reduction of NO over Ti1-xPdxO2-delta. The kinetic model showed that the enhanced catalytic activity is due to the NO photodissociation at the oxide-ion vacancy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, a new flame extinction model based on the k/epsilon turbulence time scale concept is proposed to predict the flame liftoff heights over a wide range of coflow temperature and O-2 mass fraction of the coflow. The flame is assumed to be quenched, when the fluid time scale is less than the chemical time scale ( Da < 1). The chemical time scale is derived as a function of temperature, oxidizer mass fraction, fuel dilution, velocity of the jet and fuel type. The present extinction model has been tested for a variety of conditions: ( a) ambient coflow conditions ( 1 atm and 300 K) for propane, methane and hydrogen jet flames, ( b) highly preheated coflow, and ( c) high temperature and low oxidizer concentration coflow. Predicted flame liftoff heights of jet diffusion and partially premixed flames are in excellent agreement with the experimental data for all the simulated conditions and fuels. It is observed that flame stabilization occurs at a point near the stoichiometric mixture fraction surface, where the local flow velocity is equal to the local flame propagation speed. The present method is used to determine the chemical time scale for the conditions existing in the mild/ flameless combustion burners investigated by the authors earlier. This model has successfully predicted the initial premixing of the fuel with combustion products before the combustion reaction initiates. It has been inferred from these numerical simulations that fuel injection is followed by intense premixing with hot combustion products in the primary zone and combustion reaction follows further downstream. Reaction rate contours suggest that reaction takes place over a large volume and the magnitude of the combustion reaction is lower compared to the conventional combustion mode. The appearance of attached flames in the mild combustion burners at low thermal inputs is also predicted, which is due to lower average jet velocity and larger residence times in the near injection zone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the experimental and modeling studies on the smoldering rates of incense sticks as a function of ambient oxygen fraction in air, the flow velocity and size. The experimental results are obtained both for forward and reverse smolder conditions. The results are explained on the basis of surface combustion due to diffusion of oxygen to the surface by both free and forced convection supporting the heat transfer into the solid by conduction, into the stream by convection and the radiant heat transfer from the surface. The heat release at the surface is controlled by the convective transport of the oxidizer to the surface. To obtain the diffusion rates particularly for the reverse smolder, CFD calculations of fluid flow with along with a passive scalar are needed; these calculations have been made both for forward and reverse smolder. The interesting aspect of the CFD calculations is that while the Nusselt umber for forward smolder shows a clear root( Re-u) dependence ( Re-u = Flow Reynolds Number), the result for reverse smolder shows a peak in the variation with Reynolds number with the values lower than for forward smolder and unsteadiness in the flow beyond a certain flow rate. The results of flow behavior and Nusselt number are used in a simple model for the heat transfer at the smoldering surface to obtain the dependence of the smoldering rate on the diameter of the incense stick, the flow rate of air and the oxygen fraction. The results are presented in terms of a correlation for the non-dimensional smoldering rate with radiant flux from the surface and heat generation rate at the surface. The correlations appear reasonable for both forward and reverse smolder cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a new strategy for scaling burners based on "mild combustion" is evolved and adopted to scaling a burner from 3 to a 150 kW burner at a high heat release Late of 5 MW/m(3) Existing scaling methods (constant velocity, constant residence time, and Cole's procedure [Proc. Combust. Inst. 28 (2000) 1297]) are found to be inadequate for mild combustion burners. Constant velocity approach leads to reduced heat release rates at large sizes and constant residence time approach in unacceptable levels of pressure drop across the system. To achieve mild combustion at high heat release rates at all scales, a modified approach with high recirculation is adopted in the present studies. Major geometrical dimensions are scaled as D similar to Q(1/3) with an air injection velocity of similar to 100 m/s (Delta p similar to 600 mm water gauge). Using CFD support, the position of air injection holes is selected to enhance the recirculation rates. The precise role of secondary air is to increase the recirculation rates and burn LIP the residual CO in the downstream. Measurements of temperature and oxidizer concentrations inside 3 kW, 150 kW burner and a jet flame are used to distinguish the combustion process in these burners. The burner can be used for a wide range of fuels from LPG to producer gas as extremes. Up to 8 dB of noise level reduction is observed in comparison to the conventional combustion mode. Exhaust NO emissions below 26 and 3 ppm and temperatures 1710 and 1520 K were measured for LPG and producer gas when the burner is operated at stoichiometry. (c) 2004 The Combustion Institute. Published by Elsevier Inc. All rights reserved.