236 resultados para Soft liner material


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Full-scale test embankments, with and without geotextile reinforcement, were constructed on soft Bangkok clay. The performances of these embankments are evaluated and compared with each other on the basis of field measurements and FEM analysis. The analyses of failure mechanisms and the investigations on the embankment stability using undrained conditions were also done to determine the critical embankment height and the corresponding geotextile strain. The high-strength geotextile can reduce the plastic deformation in the underlying foundation soil, increase the collapse height of the embankment on soft ground, and produce a two-step failure mechanism. In this case study, the critical strain in the geotextile corresponding to the primary failure of foundation soils may be taken as 2.5-3% irrespective of the geotextile reinforcement stiffness. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scattering of coherent light from scattering particles causes phase shift to the scattered light. The interference of unscattered and scattered light causes the formation of speckles. When the scattering particles, under the influence of an ultrasound (US) pressure wave, vibrate, the phase shift fluctuates, thereby causing fluctuation in speckle intensity. We use the laser speckle contrast analysis (LSCA) to reconstruct a map of the elastic property (Young's modulus) of soft tissue-mimicking phantom. The displacement of the scatters is inversely related to the Young's modulus of the medium. The elastic properties of soft biological tissues vary, many fold with malignancy. The experimental results show that laser speckle contrast (LSC) is very sensitive to the pathological changes in a soft tissue medium. The experiments are carried out on a phantom with two cylindrical inclusions of sizes 6 mm in diameter, separated by 8 mm between them. Three samples are made. One inclusion has Young's modulus E of 40 kPa. The second inclusion has either a Young's modulus E of 20 kPa, or scattering coefficient of mu'(s), = 3.00 mm(-1) or absorption coefficient of mu(a) = 0.03 mm(-1). The optical absorption (mu(a)), reduced scattering (mu'(s)) coefficient, and the Young's modulus of the background are mu(a) = 0.01 mm(-1), mu'(s) = 1.00 mm(-1) and 12kPa, respectively. The experiments are carried out on all three phantoms. On a phantom with two inclusions of Young's modulus of 20 and 40 kPa, the measured relative speckle image contrasts are 36.55% and 63.72%, respectively. Experiments are repeated on phantoms with inclusions of mu(a) = 0.03 mm-1, E = 40 kPa and mu'(s) = 3.00 mm(-1). The results show that it is possible to detect inclusions with contrasts in optical absorption, optical scattering, and Young's modulus. Studies of the variation of laser speckle contrast with ultrasound driving force for various values of mu(a), mu'(s), and Young's modulus of the tissue mimicking medium are also carried out. (C) 2011 American Institute of Physics. doi:10.1063/1.3592352]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glass nanocomposites in the system (100 - x)Li2B4O7-xSrBi(2)Ta(2)O(9) (0 less than or equal to x less than or equal to 22.5, in molar ratio) were fabricated via a melt quenching technique followed by controlled heat-treatment. The as-quenched samples were confirmed to be glassy and amorphous by differential thermal analysis (DTA) and X-ray powder diffraction (XRD) techniques, respectively. The phase formation and crystallite size of the heat-treated samples (glass nanocomposites) were monitored by XRD and transmission electron microscopy (TEM). The relative permittivities (epsilon(tau)') of the glass nanocomposites for different compositions were found to lie in between that of the parent host glass (Li2B4O7) and strontium bismuth tantalate (SBT) ceramic in the frequency range 100 Hz-40 MHz at 300 K, whereas the dielectric loss (D) of the glass nanocomposite was less than that of both the parent phases. Among the various dielectric models employed to predict the effective relative permittivity of the glass nanocomposite, the one obtained using the Maxwell's model was in good agreement with the experimentally observed value. Impedance analysis was employed to rationalize the electrical behavior of the glasses and glass nanocomposites. The pyroelectric response of the glasses and glass nanocomposites was monitored as a function of temperature and the pyroelectric coefficient for glass and glass nanocomposite (x = 20) at 300 K were 27 muC m(-2) K-1 and 53 muC m(-2) K-1, respectively. The ferroelectric behavior of these glass nanocomposites was established by P vs. E hysteresis loop studies. The remnant polarization (P-r) of the glass nanocomposite increases with increase in SBT content. The coercive field (E-c) and P-r for the glass nanocomposite (x = 20) were 727 V cm(-1) and 0.527 muC cm(-2), respectively. The optical transmission properties of these glass nanocomposites were found to be composition dependent. The refractive index (n = 1.722), optical polarizability (am = 1.266 6 10 23 cm 3) and third-order nonlinear optical susceptibility (x(3) = 3.046 6 10(-21) cm(3)) of the glass nanocomposite (x = 15) were larger than those of the as-quenched glass. Second harmonic generation (SHG) was observed in transparent glass nanocomposites and the d(eff) for the glass nanocomposite (x = 20) was found to be 0.373 pm V-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Syntactic foam made by mechanical mixing of glass hollow spheres in epoxy resin matrix is characterized for compressive properties in the present study. Volume fraction of hollow spheres in the syntactic foam under investigation is kept at 67.8%. Effect of specimen aspect ratio on failure behavior and stress-strain curve of the material is highlighted. Considerable differences are noted in the macroscopic fracture features of the specimen and the stress-strain curve with the variation in specimen aspect ratio, although compressive yield strength values were within a narrow range. Post compression test scanning electron microscopic observations coupled with the macroscopic observations taken during the test helped in explaining the deviation in specimen behavior and in gathering support for the proposed arguments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wear of metals in dry sliding is dictated by the material response to traction. This is demonstrated by considering the wear of aluminium and titanium alloys. In a regime of stable homogeneous deformation the material approaching the surface from the bulk passes through microprocessing zones of flow, fracture, comminution and compaction to generate a protective tribofilm that retains the interaction in the mild wear regime. If the response leads to microstructural instabilities such as adiabatic shear bands, the near-surface zone consists of stacks of 500 nm layers situated parallel to the sliding direction. Microcracks are generated below the surface to propagate normally away from the surface though microvoids situated in the layers, until it reaches a depth of 10-20 mum. A rectangular laminate debris consisting of a 20-40 layer stack is produced, The wear in this mode is severe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Specific wear rates of a range of metals and alloys upon dry sliding are compiled together to discern the influence of material properties on wear. No systematic influence of bulk hardness was found. Following our previous work on the influence of power dissipative capacity of metals on wear, we explore the influence of thermal diffusivity on wear of these metals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we develop an analytical heat transfer model, which is capable of analyzing cyclic melting and solidification processes of a phase change material used in the context of electronics cooling systems. The model is essentially based on conduction heat transfer, with treatments for convection and radiation embedded inside. The whole solution domain is first divided into two main sub-domains, namely, the melting sub-domain and the solidification sub-domain. Each sub-domain is then analyzed for a number of temporal regimes. Accordingly, analytical solutions for temperature distribution within each subdomain are formulated either using a semi-infinity consideration, or employing a method of quasi-steady state, depending on the applicability. The solution modules are subsequently united, leading to a closed-form solution for the entire problem. The analytical solutions are then compared with experimental and numerical solutions for a benchmark problem quoted in the literature, and excellent agreements can be observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new family of castor oil based biodegradable polyesters was synthesized by catalyst free melt condensation reaction between two different diacids and castor oil with D-mannitol. The polymers synthesized were characterized by NMR spectroscopy, FF-IR and the thermal properties were analysed by DSC. The results of DSC show that the polymer is rubbery in physiological conditions. The contact angle measurement and hydration test results indicate that the surface of the polymer is hydrophilic. The mechanical properties, evaluated in the tensile mode, shows that the polymer has characteristics of a soft material. In vitro degradation of polymer in PBS solution carried out at physiological conditions indicates that the degradation goes to completion within 21 days and it was also found that the rate of degradation can be tuned by varying the curing conditions. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study examines the geotechnical properties of Indian bentonite clays for their suitability as buffer material in deep geological repository for high-level nuclear wastes. The bentonite samples are characterized for index properties, compaction, hydraulic conductivity and swelling characteristics. Evaluation of geotechnical properties of the compacted bentonite-sand admixtures, from parts of NW India reveals swelling potentials and hydraulic conductivities in the range of 55 % - 108 % and 1.2 X 10 –10 cm/s to 5.42x 10 –11 cm/s respectively. Strong correlation was observed between ESP (exchangeable sodium percentage) and liquid limit/swell potential of tested specimens. Relatively less well-defined trends emerged between ESP and swell pressure/hydraulic conductivity. The Barmer-1 bentonite despite possessing relatively lower montmorillonite content of 68 %, developed higher Atterberg limit and swell potential, and exhibited comparable swelling pressure and hydraulic conductivity as other bentonites with higher montmorillonite contents (82 to 86 %). The desirable geotechnical properties of Barmer clay as a buffer material is attributed to its large ESP (63 %) and, EMDD (1.17 Mg/m3) attained at the experimental compactive stress(5 MPa).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efficiency of organic photovoltaic cells based on organic electron donor/organic electron acceptor junctions can be strongly improved when the transparent conductive Anode is coated with a Buffer Layer (ABL). Here, the effects of a metal (gold) or oxide (molybdenum oxide) ABL are reported, as a function of the Highest Occupied Molecular Orbital (HOMO) of different electron donors. The results indicate that a good matching between the work function of the anode and the highest occupied molecular orbital of the donor material is the major factor limiting the hole transfer efficiency. Indeed, gold is efficient as ABL only when the HOMO of the organic donor is close to its work function Phi(Au). Therefore we show that the MoO(3) oxide has a wider field of application as ABL than gold. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The methods of design available for geocell-supported embankments are very few. Two of the earlier methods are considered in this paper and a third method is proposed and compared with them. The first method is the slip line method proposed by earlier researchers. The second method is based on slope stability analysis proposed by this author earlier and the new method proposed is based on the finite element analyses. In the first method, plastic bearing failure of the soil was assumed and the additional resistance due to geocell layer is calculated using a non-symmetric slip line field in the soft foundation soil. In the second method, generalpurpose slope stability program was used to design the geocell mattress of required strength for embankment using a composite model to represent the shear strength of geocell layer. In the third method proposed in this paper, geocell reinforcement is designed based on the plane strain finite element analysis of embankments. The geocell layer is modelled as an equivalent composite layer with modified strength and stiffness values. The strength and dimensions of geocell layer is estimated for the required bearing capacity or permissible deformations. These three design methods are compared through a design example.