188 resultados para Si multi-strip detector
Resumo:
Existing models for dmax predict that, in the limit of μd → ∞, dmax increases with 3/4 power of μd. Further, at low values of interfacial tension, dmax becomes independent of σ even at moderate values of μd. However, experiments contradict both the predictions show that dmax dependence on μd is much weaker, and that, even at very low values of σ,dmax does not become independent of it. A model is proposed to explain these results. The model assumes that a drop circulates in a stirred vessel along with the bulk fluid and repeatedly passes through a deformation zone followed by a relaxation zone. In the deformation zone, the turbulent inertial stress tends to deform the drop, while the viscous stress generated in the drop and the interfacial stress resist deformation. The relaxation zone is characterized by absence of turbulent stress and hence the drop tends to relax back to undeformed state. It is shown that a circulating drop, starting with some initial deformation, either reaches a steady state or breaks in one or several cycles. dmax is defined as the maximum size of a drop which, starting with an undeformed initial state for the first cycle, passes through deformation zone infinite number of times without breaking. The model predictions reduce to that of Lagisetty. (1986) for moderate values of μd and σ. The model successfully predicts the reduced dependence of dmax on μd at high values of μd as well as the dependence of dmax on σ at low values of σ. The data available in literature on dmax could be predicted to a greater accuracy by the model in comparison with existing models and correlations.
Resumo:
The present work explores the temperature dependent transport behavior of n-InN nanodot/p-Si(100) heterojunction diodes. InN nanodot (ND) structures were grown on a 20 nm InN buffer layer on p-Si(100) substrates. These dots were found to be single crystalline and grown along 001] direction. The junction between these two materials exhibits a strong rectifying behavior at low temperatures. The average barrier height (BH) was determined to be 0.7 eV from current-voltage-temperature, capacitance-voltage, and flat band considerations. The band offsets derived from built-in potential were found to be Delta E-C=1.8 eV and Delta E-V=1.3 eV and are in close agreement with Anderson's model. (C) 2010 American Institute of Physics. doi:10.1063/1.3517489]
Resumo:
Existing models for dmax predict that, in the limit of μd → ∞, dmax increases with 3/4 power of μd. Further, at low values of interfacial tension, dmax becomes independent of σ even at moderate values of μd. However, experiments contradict both the predictions show that dmax dependence on μd is much weaker, and that, even at very low values of σ,dmax does not become independent of it. A model is proposed to explain these results. The model assumes that a drop circulates in a stirred vessel along with the bulk fluid and repeatedly passes through a deformation zone followed by a relaxation zone. In the deformation zone, the turbulent inertial stress tends to deform the drop, while the viscous stress generated in the drop and the interfacial stress resist deformation. The relaxation zone is characterized by absence of turbulent stress and hence the drop tends to relax back to undeformed state. It is shown that a circulating drop, starting with some initial deformation, either reaches a steady state or breaks in one or several cycles. dmax is defined as the maximum size of a drop which, starting with an undeformed initial state for the first cycle, passes through deformation zone infinite number of times without breaking. The model predictions reduce to that of Lagisetty. (1986) for moderate values of μd and σ. The model successfully predicts the reduced dependence of dmax on μd at high values of μd as well as the dependence of dmax on σ at low values of σ. The data available in literature on dmax could be predicted to a greater accuracy by the model in comparison with existing models and correlations.
Resumo:
A study of radio intensity variations at seven frequencies in the range 0.3 to 90 GHz for compact extragalactic radio sources classified as BL Lacs and high- and low-optical polarization quasars (HPQs and LPQs) is presented. This include the results of flux-density monitoring of 33 compact sources for three years at 327 MHz with the Ooty Synthesis Radio Telescope. The degrees of 'short-term' (tau less than about 1 yr) variability for the three optical types are found to be indistinguishable at low frequencies (less than 1 GHz), pointing to an extrinsic origin for the low-frequency variability. At high frequencies, a distinct dependence on optical type is present, the variability increasing from LPQs, through HPQs to BL Lacs. This trend persists even when only sources with ultra-flat radio spectra (alpha greater than -0.2) are considered. Implications of this for the phenomenon of high-frequency variability and the proposed unification schemes for different optical types of active galactic nuclei are discussed.
Resumo:
Alkali aluminosilicate glasses prepared by the gel and the melt routes have been investigated by Si-29 and Al-27 MAS NMR spectroscopy. It is found that Al has a tetrahedral coordination in the gel glasses modified with equivalent proportions of alkalis unlike in a pure aluminosilicate glass where Al has both four and six coordinations. Silicon is present as Q4 units in all the 5M2O 5Al2O3 9OSiO2 ( M = Li, Na and K) gel glasses studied whereas it is present in Q2 or Q3 species in the lithium aluminosilicate glasses of compositions 40Li2O x Al2O3 (1-x)SiO2 (1 less-than-or-equal-to x less-than-or-equal-to 15) and xLi2O 10Al2O3 (1-x)SiO2 (20 less-than-or-equal-to x less-than-or-equal-to 40). The combination of Q2 and Q3 is also found in certain sodium aluminosilicate glasses, but they change to Q2 and Q1 as the concentration of SiO2 decreases.
Resumo:
A critical test has been presented to establish the nature of the kinetic pathways for the decomposition of Fe-12 at.% Si alloy below the metastable tricritical point. The results, based on the measurements of saturation magnetization, establish that a congruent ordering from B2 --> D0(3) precedes the development of a B2 + D0(3) two-phase field, consistent with the predictions in 1976 of Allen and Cahn.
Resumo:
Differential scanning calorimetry (DSC) can be used for obtaining various non-isothermal properties of glassy materials. The thermal properties of the Si-As-Te glass system are discussed in relation to the interesting information obtained on the local ordering in these glasses.
Resumo:
A new fault-tolerant multi-transputer architecture capable of tolerating failure of any one component in the system is described. In the proposed architecture the processing nodes are automatically reconfigured in the event of a fault and the computations continue from the stage where the fault occurred. The process of reconfiguration is transparent to the user, and the identity of the failed component is communicated to the user along with the results of computations. Parallel solution of a typical engineering problem involving solution of Laplace's equation by the boundary element method has been implemented. The performance of the architecture in the event of faults has been investigated.
Resumo:
The optical bandgap and thermal diffusivity of Si10AsxTe90−x (10 ≤ x ≤ 50) and Si15AsxTe85−x (5 ≤ x ≤ 40) glasses have been measured using the photoacoustic technique. The anomalous behaviour observed in these properties at the mean coordination number left angle bracketrright-pointing angle bracket = 2.60 is interpreted by reference to the formation and development of a layered structure in these glasses.
Resumo:
Networks of biochemical reactions regulated by positive-and negative-feedback processes underlie functional dynamics in single cells. Synchronization of dynamics in the constituent cells is a hallmark of collective behavior in multi-cellular biological systems. Stability of the synchronized state is required for robust functioning of the multi-cell system in the face of noise and perturbation. Yet, the ability to respond to signals and change functional dynamics are also important features during development, disease, and evolution in living systems. In this paper, using a coupled multi-cell system model, we investigate the role of system size, coupling strength and its topology on the synchronization of the collective dynamics and its stability. Even though different coupling topologies lead to synchronization of collective dynamics, diffusive coupling through the end product of the pathway does not confer stability to the synchronized state. The results are discussed with a view to their prevalence in biological systems. Copyright (C) EPLA, 2010