181 resultados para Self-Fourier cavity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Pd-6 molecular cage [{(tmen)Pd}(6)(bpy)(3)(tma)2)](NO3)(6) [1; where tmen = N,N,N,N-tetramethylethylene diamine, bpy = 4,4'-bipyridyl,and H(3)tma = trimesic acid] was prepared via the template-free three-component seff-assembly of a cis-blocked palladium(II) acceptorin combination with a tricarboxylate and a dipyridyl donor. Complex 1 represents the first example of a 3D palladium(II) cage of defined shape incorporating anionic and neutral linkers. Guest-induced exclusive formation of this cage was also monitored by an NMR study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present results of photoluminescence spectroscopy and lifetime measurements on thin film hybrid arrays of semiconductor quantum dots and metal nanoparticles embedded in a block copolymer template. The intensity of emission as well as the measured lifetime would be controlled by varying the volume fraction and location of gold nanoparticles in the matrix. We demonstrate the ability to both enhance and quench the luminescence in the hybrids as compared to the quantum dot array films while simultaneously engineering large reduction in luminescence lifetime with incorporation of gold nanoparticles. (C) 2010 American Institute of Physics. [doi:10.1063/1.3483162].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films of hybrid arrays of cadmium selenide quantum dots and polymer grafted gold nanoparticles have been prepared using a BCP template. Controlling the dispersion and location of the respective nanoparticles allows us to tune the exciton-plasmon interaction in such hybrid arrays and hence control their optical properties. The observed photoluminescence of the hybrid array films is interpreted in terms of the dispersion and location of the gold nanoparticles and quantum dots in the block copolymer matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanosized hexagonal InN flower-like structures were fabricated by droplet epitaxy on GaN/Si(111) and GaN flower-like nanostructure fabricated directly on Si(111) substrate using radio frequency plasma-assisted molecular beam epitaxy. Powder X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to study the crystallinity and morphology of the nanostructures. Moreover, X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL) were used to investigate the chemical compositions and optical properties of nano-flowers, respectively. Activation energy of free exciton transitions in GaN nano-flowers was derived to be similar to 28.5 meV from the temperature dependent PL studies. The formation process of nano-flowers is investigated and a qualitative mechanism is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the influence of polymer grafted bilayers on the physicomechanical properties of lipid membranes is important while developing liposomal based drug delivery systems. The melting characteristics and bending moduli of polymer grafted bilayers are investigated using dissipative particle dynamics simulations as a function of the amount of grafted polymer and lipid tail length. Simulations are carried out using a modified Andersen barostat, whereby the membrane is maintained in a tensionless state. For lipids made up of four to six tail beads, the transition from the low temperature L-beta phase to the L-alpha phase is lowered only above a grafting fraction of G(f)=0.12 for polymers made up of 20 beads. Below G(f)=0.12 small changes are observed only for the HT4 bilayer. The bending modulus of the bilayers is obtained as a function of G(f) from a Fourier analysis of the height fluctuations. Using the theory developed by Marsh Biochim. Biophys. Acta 1615, 33 (2003)] for polymer grafted membranes, the contributions to the bending modulus due to changes arising from the grafted polymer and bilayer thinning are partitioned. The contributions to the changes in kappa from bilayer thinning were found to lie within 11% for the lipids with four to six tail beads, increasing to 15% for the lipids containing nine tail beads. The changes in the area stretch modulus were also assessed and were found to have a small influence on the overall contribution from membrane thinning. The increase in the area per head group of the lipids was found to be consistent with the scalings predicted by self-consistent mean field results. (C) 2010 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In earlier work, nonisomorphic graphs have been converted into networks to realize Multistage Interconnection networks, which are topologically nonequivalent to the Baseline network. The drawback of this technique is that these nonequivalent networks are not guaranteed to be self-routing, because each node in the graph model can be replaced by a (2 × 2) switch in any one of the four different configurations. Hence, the problem of routing in these networks remains unsolved. Moreover, nonisomorphic graphs were obtained by interconnecting bipartite loops in a heuristic manner; the heuristic nature of this procedure makes it difficult to guarantee full connectivity in large networks. We solve these problems through a direct approach, in which a matrix model for self-routing networks is developed. An example is given to show that this model encompases nonequivalent self-routing networks. This approach has the additional advantage in that the matrix model itself ensures full connectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a new self-assembly based strategy for the design of novel lanthanide based luminescent materials. In this approach a europium hydrogel is prepared and sensitization is achieved by doping the gel with pyrene in a non-coordinated fashion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordination-driven self-assembly of 1,3,5-benzenetricarboxylate (tma; 1) and oxalato-bridged p-cymeneruthenium(II) building block Ru-2(mu-eta(4)-C2O4)(MeOH)(2)(eta(6)-p-cymene)(2)](O3SCF3)(2) (2) affords an unusual octanuclear incomplete prism Ru-8(eta(6)-p-cymene)(8)(tma)(2)(mu-eta(4)-C2O4)(2)(OMe)(4)](O3SCF3)( 2) (3), which exhibits a remarkable shape-selective binding affinity for neutral phenolic compounds via hydrogen-bonding interactions (p-cymene = p-(PrC6H4Me)-Pr-i). Such a binding was confirmed by single-crystal X-ray diffraction analysis using 1,3,5-trihydroxybenzene as an analyte.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation of the initiation and growth of erosion and of the effect of velocity and pressure on erosion in a rotating disk is presented. Also, the role of an intervening noncavitating period on erosion is studied. The results indicate that at high intensities the peak rate of erosion decreases with increases in pressure. The erosion rate/time curves obtained for metallic materials are explained by the eroded particle distribution and the cavity size. The average size of the eroded particles decreased when pressure and tensile strength of the material were increased. The erosion rate peaked after an intervening noncavitating period. The use of the rate of erosion, defined as an average over the entire test duration, in the equation governing the theory of erosion resulted in reasonably good correlations. The correlations reveal that it is possible to predict the length, width, and area of a cavity when the cavitation parameter σ is known. The normalized width of a cavity may be estimated if its normalized length is known.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A complete solution to the fundamental problem of delineation of an ECG signal into its component waves by filtering the discrete Fourier transform of the signal is presented. The set of samples in a component wave is transformed into a complex sequence with a distinct frequency band. The filter characteristics are determined from the time signal itself. Multiplication of the transformed signal with a complex sinusoidal function allows the use of a bank of low-pass filters for the delineation of all component waves. Data from about 300 beats have been analysed and the results are highly satisfactory both qualitatively and quantitatively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A first comprehensive investigation on the deflagration of ammonium perchlorate (AP) in the subcritical regime, below the low pressure deflagration limit (LPL, 2.03 MPa) christened as regime I$^{\prime}$, is discussed by using an elegant thermodynamic approach. In this regime, deflagration was effected by augmenting the initial temperature (T$_{0}$) of the AP strand and by adding fuels like aliphatic dicarboxylic acids or polymers like carboxy terminated polybutadiene (CTPB). From this thermodynamic model, considering the dependence of burning rate ($\dot{r}$) on pressure (P) and T$_{0}$, the true condensed (E$_{\text{s,c}}$) and gas phase (E$_{\text{s,g}}$) activation energies, just below and above the surface respectively, have been obtained and the data clearly distinguishes the deflagration mechanisms in regime I$^{\prime}$ and I (2.03-6.08 MPa). Substantial reduction in the E$_{\text{s,c}}$ of regime I$^{\prime}$, compared to that of regime I, is attributed to HClO$_{4}$ catalysed decomposition of AP. HClO$_{4}$ formation, which occurs only in regime I$^{\prime}$, promotes dent formation on the surface as revealed by the reflectance photomicrographs, in contrast to the smooth surface in regime I. The HClO$_{4}$ vapours, in regime I$^{\prime}$, also catalyse the gas phase reactions and thus bring down the E$_{\text{s,g}}$ too. The excess heat transferred on to the surface from the gas phase is used to melt AP and hence E$_{\text{s,c}}$, in regime I, corresponds to the melt AP decomposition. It is consistent with the similar variation observed for both the melt layer thickness and $\dot{r}$ as a function of P. Thermochemical calculations of the surface heat release support the thermodynamic model and reveal that the AP sublimation reduces the required critical exothermicity of 1108.8 kJ kg$^{-1}$ at the surface. It accounts for the AP not sustaining combustion in the subcritical regime I$^{\prime}$. Further support for the model comes from the temperature-time profiles of the combustion train of AP. The gas and condensed phase enthalpies, derived from the profile, give excellent agreement with those computed thermochemically. The $\sigma _{\text{p}}$ expressions derived from this model establish the mechanistic distinction of regime I$^{\prime}$ and I and thus lend support to the thermodynamic model. On comparing the deflagration of strand against powder AP, the proposed thermodynamic model correctly predicts that the total enthalpy of the condensed and gas phases remains unaltered. However, 16% of AP particles undergo buoyant lifting into the gas phase in the `free board region' (FBR) and this renders the demarcation of the true surface difficult. It is found that T$_{\text{s}}$ lies in the FBR and due to this, in regime I$^{\prime}$, the E$_{\text{s,c}}$ of powder AP matches with the E$_{\text{s,g}}$ of the pellet. The model was extended to AP/dicarboxylic acids and AP/CTPB mixture. The condensed ($\Delta $H$_{1}$) and gas phase ($\Delta $H$_{2}$) enthalpies were obtained from the temperature profile analyses which fit well with those computed thermochemically. The $\Delta $H$_{1}$ of the AP/succinic acid mixture was found just at the threshold of sustaining combustion. Indeed the lower homologue malonic acid, as predicted, does not sustain combustion. In vaporizable fuels like sebacic acid the E$_{\text{s,c}}$ in regime I$^{\prime}$, understandably, conforms to the AP decomposition. However, the E$_{\text{s,c}}$ in AP/CTPB system corresponds to the softening of the polymer which covers AP particles to promote extensive condensed phase reactions. The proposed thermodynamic model also satisfactorily explains certain unique features like intermittent, plateau and flameless combustion in AP/ polymeric fuel systems.