134 resultados para Scalar fields
Resumo:
The gross characteristics of spatio-temporal current evolution in the return stroke phase of a cloud-to-ground lightning are rather well defined. However, they by themselves do not ensure the salient features for the resulting remote Electro- Magnetic Fields (EMFs). In spite of significant efforts in the engineering models wherein, the spatio-temporal current distribution all along the channel is specified by the design, all the salient features of remote EMFs could not be achieved. Only the current evolution that ensures the basic characteristics along with its ability to reproduce all the salient features of remote EMFs ranging from 50 m – 200 km from the lightning channel, can be considered as a realistic return stroke channel current. In view of this, the present work intends to investigate on the required fine features of the return stroke current evolution that yields all the desired features. To ensure that the current evolution is not arbitrary but obeys the involved basic physical processes, a recently developed physical model will be employed for the analysis.
Resumo:
We report on a comprehensive analysis of the renormalization of noncommutative phi(4) scalar field theories on the Groenewold-Moyal plane. These scalar field theories are twisted Poincare invariant. Our main results are that these scalar field theories are renormalizable, free of UV/IR mixing, possess the same fixed points and beta-functions for the couplings as their commutative counterparts. We also argue that similar results hold true for any generic noncommutative field theory with polynomial interactions and involving only pure matter fields. A secondary aim of this work is to provide a comprehensive review of different approaches for the computation of the noncommutative S-matrix: noncommutative interaction picture and noncommutative Lehmann-Symanzik-Zimmermann formalism. DOI: 10.1103/PhysRevD.87.064014
Resumo:
A network of ship-mounted real-time Automatic Weather Stations integrated with Indian geosynchronous satellites Indian National Satellites (INSATs)] 3A and 3C, named Indian National Centre for Ocean Information Services Real-Time Automatic Weather Stations (I-RAWS), is established. The purpose of I-RAWS is to measure the surface meteorological-ocean parameters and transmit the data in real time in order to validate and refine the forcing parameters (obtained from different meteorological agencies) of the Indian Ocean Forecasting System (INDOFOS). Preliminary validation and intercomparison of analyzed products obtained from the National Centre for Medium Range Weather Forecasting and the European Centre for Medium-Range Weather Forecasts using the data collected from I-RAWS were carried out. This I-RAWS was mounted on board oceanographic research vessel Sagar Nidhi during a cruise across three oceanic regimes, namely, the tropical Indian Ocean, the extratropical Indian Ocean, and the Southern Ocean. The results obtained from such a validation and intercomparison, and its implications with special reference to the usage of atmospheric model data for forcing ocean model, are discussed in detail. It is noticed that the performance of analysis products from both atmospheric models is similar and good; however, European Centre for Medium-Range Weather Forecasts air temperature over the extratropical Indian Ocean and wind speed in the Southern Ocean are marginally better.
Resumo:
In this paper we present a hardware-software hybrid technique for modular multiplication over large binary fields. The technique involves application of Karatsuba-Ofman algorithm for polynomial multiplication and a novel technique for reduction. The proposed reduction technique is based on the popular repeated multiplication technique and Barrett reduction. We propose a new design of a parallel polynomial multiplier that serves as a hardware accelerator for large field multiplications. We show that the proposed reduction technique, accelerated using the modified polynomial multiplier, achieves significantly higher performance compared to a purely software technique and other hybrid techniques. We also show that the hybrid accelerated approach to modular field multiplication is significantly faster than the Montgomery algorithm based integrated multiplication approach.
Resumo:
We studied the development of surface instabilities leading to the generation of multielectron bubbles (MEBs) in superfluid helium upon the application of a pulsed electric field. We found the statistical distribution of the charge of individual instabilities to be strongly dependent on the duration of the electric field pulse. The rate and probability of generation of these instabilities in relation to the temporal characteristics of the applied field was also investigated.
Resumo:
We have conceived a supersymmetric Type II seesaw model at TeV scale, which has some additional particles consisting of scalar and fermionic triplet Higgs states, whose masses are around a few hundred GeV. In this particular model, we have studied constraints on the masses of triplet states arising from the lepton flavor violating (LFV) processes, such as mu -> 3e and mu -> e gamma. We have analyzed the implications of these constraints on other observable quantities such as the muon anomalous magnetic moment and the decay patterns of scalar triplet Higgses. Scalar triplet Higgs states can decay into leptons and into supersymmetric fields. We have found that the constraints from LFV can affect these various decay modes.
Resumo:
Recent experiments on fermions in synthetic gauge fields result in systems with a spin-orbit coupling along one spatial axis, a detuning field, and a Zeeman field. We show theoretically that the presence of all three results in interesting and unusual phenomena in a system of interacting fermions (interactions described by a scattering length). For two fermions, bound states appear only over a certain range of the center-of-mass momenta. The deepest bound state appears at a nonzero center-of-mass momentum. For center-of-mass momenta without a bound state, the gauge field induces a resonance-like feature in the scattering continuum resulting in a large scattering phase shift. In the case of many particles, we demonstrate that the system, in a parameter range, shows flow-enhanced pairing, i.e., a Fulde-Farrell-Larkin-Ovchnnikov superfluid state made of robust pairs with a finite center-of-mass momentum. Yet another regime of parameters offers the opportunity to study strongly interacting normal states of spin-orbit-coupled fermionic systems utilizing the resonance-like feature induced by the synthetic gauge field.
Resumo:
The present work involves a computational study of soot (chosen as a scalar which is a primary pollutant source) formation and transport in a laminar acetylene diffusion flame perturbed by a convecting line vortex. The topology of soot contours resulting from flame vortex interactions has been investigated. More soot was produced when vortex was introduced from the air side in comparison to the fuel side. Also, the soot topography was spatially more diffuse in the case of air side vortex. The computational model was found to be in good agreement with the experimental work previously reported in the literature. The computational simulation enabled a study of various parameters like temperature, equivalence ratio and temperature gradient affecting the soot production and transport. Temperatures were found to be higher in the case of air side vortex in contrast to the fuel side one. In case of fuel side vortex, abundance of fuel in the vortex core resulted in fuel-rich combustion zone in the core and a more discrete soot topography. Besides, the overall soot production was observed to be low in the fuel side vortex. However, for the air side vortex, air abundance in the core resulted in higher temperatures and greater soot production. Probability density functions (PDFs) have been introduced to investigate the spatiotemporal variation of soot yield and transport and their dependence on temperature and acetylene concentration from statistical view point. In addition, the effect of flame curvature on soot production is also studied. The regions convex to fuel stream side witnessed thicker soot layer. All numerical simulations have been carried out on Fluent 6.3.26. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Let F be a non-archimedean local field and let O be its ring of integers. We give a complete description of the irreducible constituents of the restriction of the unramified principal series representations of GL(3)(F) to GL(3)(O). (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
We revisit the constraints on the parameter space of the Minimal Supersymmetric Standard Model (MSSM), from charge and color breaking minima in the light of information on the Higgs from the LHC so far. We study the behavior of the scalar potential keeping two light sfermion fields along with the Higgs in the pMSSM framework and analyze the stability of the vacuum. We find that for lightest stops a parts per thousand(2) 1 TeV and small mu a parts per thousand(2) 500 GeV, the absolute stability of the potential can be attained only for . The bounds become stronger for larger values of the mu parameter. Note that this is approximately the value of Xt which maximizes the Higgs mass. Our bounds on the low scale MSSM parameters are more stringent than those reported earlier in literature. We reanalyze the stau sector as well, keeping both staus. We study the connections between the observed Higgs rates and vacuum (meta)stability. We show how a precision study of the ratio of signal strengths, (mu (gamma gamma) /mu (ZZ) ) can shed further light.
Resumo:
The Large Hadron Collider (LHC) has completed its run at 8 TeV with the experiments ATLAS and CMS having collected about 25 fb(-1) of data each. Discovery of a light Higgs boson coupled with lack of evidence for supersymmetry at the LHC so far, has motivated studies of supersymmetry in the context of naturalness with the principal focus being the third generation squarks. In this work, we analyze the prospects of the flavor violating decay mode (t) over tilde (1) -> c chi(0)(1) at 8 and 13 TeV center-of-mass energy at the LHC. This channel is also relevant in the dark matter context for the stop-coannihilation scenario, where the relic density depends on the mass difference between the lighter stop quark ((t) over tilde (1)) and the lightest neutralino (chi(0)(1)) states. This channel is extremely challenging to probe, especially for situations when the mass difference between the lighter stop quark and the lightest neutralino is small. Using certain kinematical properties of signal events we find that the level of backgrounds can be reduced substantially. We find that the prospect for this channel is limited due to the low production cross section for top squarks and limited luminosity at 8 TeV, but at the 13 TeV LHC with 100 fb(-1) luminosity, it is possible to probe top squarks with masses up to similar to 450 GeV. We also discuss how the sensitivity could be significantly improved by tagging charm jets.
Resumo:
In well dispersed multi-wall carbon nanotube-polystyrene composite of 15 wt%, with room temperature conductivity of similar to 5 S/cm and resistivity ratio R-2K/R-200K] of similar to 1.4, the temperature dependence of conductivity follows a power-law behavior. The conductivity increases with magnetic field for a wide range of temperature (2-200 K), and power-law fits to conductivity data show that localization length (xi) increases with magnetic field, resulting in a large negative magnetoresistance (MR). At 50T, the negative MR at 8 K is similar to 13% and it shows a maximum at 90K (similar to 25%). This unusually large negative MR indicates that the field is delocalizing the charge carriers even at higher temperatures, apart from the smaller weak localization contribution at T < 20 K. This field-induced delocalization mechanism of MR can provide insight into the intra and inter tube transport. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
This paper reports on an experimental study on the ploughing or orthogonal cutting in sand. Plane strain cutting or ploughing experiments were carried out on model Ottawa sand while being imaged at high resolution. The images obtained were further processed using image analysis and the evolution of the velocity and deformation fields were obtained from these analysis. The deformation fields show the presence of a clear shear zone in which the sand accrues deformation. A net change in the direction of the velocity of the sand is also clearly visible. The effective depth of cut of the sand also increases with continuous cutting as the sand reposes on itself. This deformation mechanics at the incipient stages of cutting is similar to that observed in metal cutting.