109 resultados para SODIUM CARBONATES
Resumo:
Approximately 140 million years ago, the Indian plate separated from Gondwana and migrated by almost 90 degrees latitude to its current location, forming the Himalayan-Tibetan system. Large discrepancies exist in the rate of migration of Indian plate during Phanerozoic. Here we describe a new approach to paleo-latitudinal reconstruction based on simultaneous determination of carbonate formation temperature and delta O-18 of soil carbonates, constrained by the abundances of C-13-O-18 bonds in palaeosol carbonates. Assuming that the palaeosol carbonates have a strong relationship with the composition of the meteoric water, delta O-18 carbonate of palaeosol can constrain paleo-latitudinal position. Weighted mean annual rainfall delta O-18 water values measured at several stations across the southern latitudes are used to derive a polynomial equation: delta(18)Ow = -0.006 x (LAT)(2) - 0.294 x (LAT) - 5.29 which is used for latitudinal reconstruction. We use this approach to show the northward migration of the Indian plate from 46.8 +/- 5.8 degrees S during the Permian (269 M. y.) to 30 +/- 11 degrees S during the Triassic (248 M. y.), 14.7 +/- 8.7 degrees S during the early Cretaceous (135 M. y.), and 28 +/- 8.8 degrees S during the late Cretaceous ( 68 M. y.). Soil carbonate delta O-18 provides an alternative method for tracing the latitudinal position of Indian plate in the past and the estimates are consistent with the paleo-magnetic records which document the position of Indian plate prior to 135 +/- 3 M. y.
Resumo:
Rechargeable batteries have been the torchbearer electrochemical energy storage devices empowering small-scale electronic gadgets to large-scale grid storage. Complementing the lithium-ion technology, sodium-ion batteries have emerged as viable economic alternatives in applications unrestricted by volume/weight. What is the best performance limit for new-age Na-ion batteries? This mission has unravelled suites of oxides and polyanionic positive insertion (cathode) compounds in the quest to realize high energy density. Economically and ecologically, iron-based cathodes are ideal for mass-scale dissemination of sodium batteries. This Perspective captures the progress of Fe-containing earth-abundant sodium battery cathodes with two best examples: (i) an oxide system delivering the highest capacity (similar to 200 mA h/g) and (ii) a polyanionic system showing the highest redox potential (3.8 V). Both develop very high energy density with commercial promise for large-scale applications. Here, the structural and electrochemical properties of these two cathodes are compared and contrasted to describe two alternate strategies to achieve the same goal, i.e., improved energy density in Fe-based sodium battery cathodes.
Resumo:
Exploring future cathode materials for sodium-ion batteries, alluaudite class of Na2Fe2II(SO4)(3) has been recently unveiled as a 3.8 V positive insertion candidate (Barpanda et al. Nat. Commun. 2014, 5, 4358). It forms an Fe-based polyanionic compound delivering the highest Fe-redox potential along with excellent rate kinetics and reversibility. However, like all known SO4-based insertion materials, its synthesis is cumbersome that warrants careful processing avoiding any aqueous exposure. Here, an alternate low temperature ionothermal synthesis has been described to produce the alluaudite Na2+2xFe2-xII(SO4)(3). It marks the first demonstration of solvothermal synthesis of alluaudite Na2+2xM2-xII(SO4)(3) (M = 3d metals) family of cathodes. Unlike classical solid-state route, this solvothermal route favors sustainable synthesis of homogeneous nanostructured alluaudite products at only 300 degrees C, the lowest temperature value until date. The current work reports the synthetic aspects of pristine and modified ionothermal synthesis of Na2+2xFe2-xII(SO4)(3) having tunable size (300 nm similar to 5 mu m) and morphology. It shows antiferromagnetic ordering below 12 K. A reversible capacity in excess of 80 mAh/g was obtained with good rate kinetics and cycling stability over 50 cycles. Using a synergistic approach combining experimental and ab initio DFT analysis, the structural, magnetic, electronic, and electrochemical properties and the structural limitation to extract full capacity have been described.
Resumo:
Sodium-ion-based batteries have evolved as excellent alternatives to their lithium-ion-based counterparts due to the abundance, uniform geographical distribution and low price of Na resources. In the pursuit of sodium chemistry, recently the alluaudite framework Na2M2(SO4)(3) has been unveiled as a high-voltage sodium insertion system. In this context, the framework of density functional theory has been applied to systematically investigate the crystal structure evolution, density of states and charge transfer with sodium ions insertion, and the corresponding average redox potential, for Na2M2(SO4)(3) (M = Fe, Mn, Co and Ni). It is shown that full removal of sodium atoms from the Fe-based device is not a favorable process due to the 8% volume shrinkage. The imaginary frequencies obtained in the phonon dispersion also reflect this instability and the possible phase transition. This high volume change has not been observed in the cases of the Co- and Ni-based compounds. This is because the redox reaction assumes a different mechanism for each of the compounds investigated. For the polyanion with Fe, the removal of sodium ions induces a charge reorganization at the Fe centers. For the Mn case, the redox process induces a charge reorganization of the Mn centers with a small participation of the oxygen atoms. The Co and Ni compounds present a distinct trend with the redox reaction occurring with a strong participation of the oxygen sublattice, resulting in a very small volume change upon desodiation. Moreover, the average deintercalation potential for each of the compounds has been computed. The implications of our findings have been discussed both from the scientific perspective and in terms of technological aspects.