513 resultados para Rydberg Atoms
Resumo:
Amidopyrine (1-phenyl-2,3-dimethyl-4-dimethylaminopyrazolone), C13HzvN30, a dimethylamino derivative of antipyrine and an important analgesic and antipyretic agent, crystallizes in the triclinic space group P1 with four molecules in a unit cell of dimensions a= 7.458 (5), b = 10.744 (5), c= 17.486 (15)/~,, e=98.6 (2),/~= 85.6 (3), y= 108-6 (2) . The structure was solved by direct methods and refined to an R value of 0.055 for 3706 photographically observed reflexions. The dimensions of the two crystallographically independent molecules are very nearly the same. The pyrazolone moiety in the molecule has dimensions comparable to those in antipyrine. Unlike antipyrine, the molecular dimensions of amidopyrine in the free state (the present structure) are close to those found in some of its hydrogenbonded complexes. Thus it appears that the presence of the dimethylamino group makes the molecule more resistant to changes in its dimensions resulting from molecular association. An attempt has also been made to correlate the polar nature of the pyrazolone moiety and the hybridization state of the hetero nitrogen atoms in antipyrine, amidopyrine and their complexes.
Resumo:
The potential energy curve of the He2+2 system dissociating into two He+ ions is examined in terms of the electronic force exerted on each nucleus as a function of the internuclear separation. The results are compared with the process of bond-formation in H2 from the separated atoms.
Resumo:
The complexes of monothiobiuret with Co(II), Ni(II), Cd(II) and Hg(II) chlorides are investigated. The ligand is suggested to be unidentate bonding through sulfur in Co(II) and Hg(II) complexes and bidentate bonding through both sulfur and oxygen atoms in the other two complexes.
Resumo:
Gabapentin (1-aminomethylcyclohexaneacetic acid, Gpn) is an achiral, conformationally constrained gamma amino acid residue. A survey of available crystal structures of Gpn peptides reveals that the torsion angles about the C-gamma-C-beta (theta(1)) and C-beta-C-alpha(theta(2)) bonds are overwhelmingly limited to gauche, gauche (g(+)g(+)/g(-)g(-)) conformations. The Gpn residue forms C-7 and C-9 hydrogen bonds in which the donor and acceptor atoms come from the flanking peptide units. In combination with alpha amino acid residues alpha gamma and gamma alpha segments can adopt C-12 hydrogen bonded structures. The conformational choices available to the Gpn residue have been probed using energy calculations, adopting a grid search strategy. Ramachandran phi-psi maps have been constructed for fixed values of theta(1) and theta(2), corresponding to the gauche and trans conformations. The sterically allowed and energetically favorable regions of conformational space have been defined and experimental observations compared. C-7 and C-9 hydrogen bonded conformational families have been identified using a grid search approach in which theta(1) and theta(2) values are varied over a range of +/- 10 degrees about ideal values at 1 degrees intervals. The theoretical analysis together with experimental observations for 59 Gpn residues from 35 crystal structures permits definition of the limited range of conformational possibilities at this gamma amino acid residue. .
Resumo:
The X-ray crystal structures of 4-butyl-1,2-diphenylpyrazolidine-3,5-dione (phenylbutazone)(I). and its 2 : 1 complex (II) with piperazine have been determined by direct methods and the structures refined to R 0.096 (2 300 observed reflections measured by diffractometer) and 0.074 (2 494 observed reflections visuallyestimated). Crystals are monoclinic, space group P21/c; for (I)a= 21.695(4), b= 5.823(2), c= 27.881(4)Å, = 108.06 (10)°, Z= 8, and for (II)a= 8.048(4), b= 15.081(4), c= 15.583(7)Å, = 95.9(3)°, Z= 2. The two crystallographically independant molecules in the structure of (I) are similar except for the conformation of the butyl group, which is disordered in one of the molecules. In the pyrazolidinedione group, the two C–C bonds are single and the two C–O bonds double. The two nitrogen atoms in the five-membered ring are pyramidal with the attached phenyl groups lying on the opposite sides of the mean plane of the ring. The phenylbutazone molecule in (II) exists as a negative ion owing to deprotonation of C-4. C-4 is therefore trigonal and the orientation of the Bu group with respect to the pyrazolidinedione group is considerably different from that in (I); there is also considerable electron delocalization along the C–O and C–C bonds. These changes in geometry and electronic structure may relate to biological activity. The doubly charged cationic piperazine molecule exists in the chair form with the nitrogen atoms at the apices. The crystal structure of (II) is stabilized by ionic interactions and N–H O hydrogen bonds.
Resumo:
The primary structure of collagen is characterized by the repeating tripeptide sequence (Gly-R2-R3)n. The results of theoretical studies, carried out using contact criteria to compute the stereochemically allowed orientations for various side chains at locations 2 and 3, are reported here. It is found that side chains with only γ-atoms, as in valine, serine and threonine, or with only one δ-methyl group, as in isoleucine, can occur equally well at locations 2 and 3, as is actually the case in collagen. Side chains with two Cδ-atoms, as in leucine and phenyl-alanine, can also be accommodated at both positions. However, if they occur as R3 their freedom of orientation is severely restricted in the presence of a proline residue as R2 in a neighbouring chain. If water molecules bound to the chains of the triple helix are assumed to be present, then location 3 is virtually impossible for leucine and phenylalanine residues. Location 2 is, however, unaffected, and their presence as R2 can help to shield the water molecules from disturbance by the solvent medium. This may be the reason for the preferential occurrence of Leu and Phe residues in location 2 in the collagen triplets, although the polypeptides (Gly-Pro-Leu)n and (Gly-Pro-Phe)n form collagen-like structures.
Resumo:
[Ni(NCS)2(CHsN3S)2], Mr = 356.7, monoclinic, P21/c , a = 5-297 (1), b = 7.869 (1), c - 16-078 (2) A,/3 = 91.53 (1) °, V-= 669.9 A 3, Z= 2, Om = 1"76, Dx = 1"771 g cm -3, A(Mo Ka) = 0-71069 ]k, /.~ = 19"9 cm-l, F(000) = 364, T = 295 K, final R = 0.026 for 1576 significant [F > 10g(F)] reflections. The complex lies on a crystallographic centre of symmetry. The Ni atom is octahedrally coordinated by two thiocyanates (through N atoms) and by two thiosemicarbazide molecules (through hydrazinic N and S atoms). The crystal structure is stabilized by N--H...S hydrogen bonds. Early work on this structure [Garaj & Dunaj-Jurco (1968). Chem. Commun. p. 518] used photographic data and was refined to R = 0-13 for 512 reflections.
Resumo:
An analysis of the recently reported cDNA derived amino acid sequences of mouse (Kleene and Flynn, J. Biol. Chem. , 17272–17277, 1987) and rat (Luersson Image ,Nucl. Acids Res. Image , 3585, 1989). TP2 has revealed the presence of two potential zinc finger motifs involving cysteine and histidine residues. TP2, as purified from rat elongating spermatids, is shown here to contain 0.2 atoms of zinc bound per molecule of the protein by atomic absorption spectroscopy. On incubation with 10 μM ZnCl2, Image , and subsequent exhaustive dialysis, TP2 had 2 atoms of zinc bound per molecule. The involvement of cysteine residues of TP2 in coordination with zinc was also suggested by the observation that TP2 could be labeled, Image , with iodoacetamidofluorescein only after preincubation of spermatid nuclei with EDTA. The zinc finger domains of TP2 may play an important role in initiation of chromatin condensation and /or cessation of transcriptional activity during mammalian spermiogenesis. DTT, Dithiothreitol; IAF, Iodoacetamido-fluorescein; SDS, Sodium dodecyl sulfate; PAGE, Polyacrylamide gel electrophoresis; PMSF, Phynyl methyl sulfonyl fluoride
Resumo:
The potential energy curves of the ground state and the first excited state of H2 are examined in terms of the electronic force acting on each nucleus. The results reveal the detailed course of events that occur when two hydrogen atoms with parallel and antiparallel electron spins approach one another from a large internuclear separation.
Resumo:
In this manuscript, we propose a criterion for a weakly bound complex formed in a supersonic beam to be characterized as a `hydrogen bonded complex'. For a `hydrogen bonded complex', the zero point energy along any large amplitude vibrational coordinate that destroys the orientational preference for the hydrogen bond should be significantly below the barrier along that coordinate so that there is at least one bound level. These are vibrational modes that do not lead to the breakdown of the complex as a whole. If the zero point level is higher than the barrier, the `hydrogen bond' would not be able to stabilize the orientation which favors it and it is no longer sensible to characterize a complex as hydrogen bonded. Four complexes, Ar-2-H2O, Ar-2-H2S, C2H4-H2O and C2H4-H2S, were chosen for investigations. Zero point energies and barriers for large amplitude motions were calculated at a reasonable level of calculation, MP2(full)/aug-cc-pVTZ, for all these complexes. Atoms in molecules (AIM) theoretical analyses of these complexes were carried out as well. All these complexes would be considered hydrogen bonded according to the AIM theoretical criteria suggested by Koch and Popelier for C-H center dot center dot center dot O hydrogen bonds (U. Koch and P. L. A. Popelier, J. Phys. Chem., 1995, 99, 9747), which has been widely and, at times, incorrectly used for all types of contacts involving H. It is shown that, according to the criterion proposed here, the Ar-2-H2O/H2S complexes are not hydrogen bonded even at zero kelvin and C2H4-H2O/H2S complexes are. This analysis can naturally be extended to all temperatures. It can explain the recent experimental observations on crystal structures of H2S at various conditions and the crossed beam scattering studies on rare gases with H2O and H2S.
Resumo:
Synthesis, spectroscopic and thermal characterization of two new classes of polysulfide polymers: poly[1(phenoxymethyl) ethylene polysulfide] (PPMEP), and poly [1-(phenoxy) ethylene polysulfide] (PPEP) is presented. The direct pyrolysis mass spectrometry (DP-MS) technique, used to study the thermal degradation behavior of these polysulfide polymers, indicated that the polymers underwent degradation through the weak-links scission. The thermal stability of the polysulfide polymers decreased as the ``rank'' (number of sulfur atoms in the polysulfide linkage; n=1, 2, 4) increased. The main-chain flexibility of these polysulfide polymers in terms of their C-13 NMR spinlattice relaxation time (T-1) measurements on the backbone methine (-CH-) and methylene (-CH2-) carbons are reported here for the first time. A comparative study of the solution chain dynamics indicated that it increased as ``rank'' of the polysulfide linkages decreased as well as by introducing side chain spacers such as, ether (-O-) or methyleneoxy (-CH2O-) groups.
Resumo:
A survey of the literature on lanthanide coordination compounds reveals that ligands involving ether oxygens as donor atoms have received very little attention [ 11. Only recently have the complexes of lanthanides with cyclic polyethers been characterized [l-3]. We report in this communication that interaction of rareearth perchlorates with two new ligands namely N,N,N’,N’-tetramethyl-u-carboxamido-Oanisamide (TMCA) and N,N’-di-t-butyl-crcarboxamido- 0-anisamide (DTBCA). The two ligands are potentially tridentate possessing two amide moieties and an ether linkage in between. The isolated complexes have been characterized by analysis, electrolytic conductance, infrared and electronic spectra. The ‘H and “C NMR spectra for the diamagnetic La3+ and Y3+ complexes are also discussed.
Resumo:
The novel multidomain organization in the multimeric Escherichia coli AHAS I (ilvBN) enzyme has been dissected to generate polypeptide fragments. These fragments when cloned, expressed and purified reassemble in the presence of cofactors to yield a catalytically competent enzyme. Structural characterization of AHAS has been impeded due to the fact that the holoenzyme is prone to dissociation leading to heterogeneity in samples. Our approach has enabled the structural characterization using high-resolution nuclear magnetic resonance methods. Near complete sequence specific NMR assignments for backbone H-N, N-15, C-13 alpha and C-13(beta) atoms of the FAD binding domain of ilvB have been obtained on samples isotopically enriched in H-2, C-13 and N-15. The secondary structure determined on the basis of observed C-13(alpha) secondary chemical shifts and sequential NOEs indicates that the secondary structure of the FAD binding domain of E. coli AHAS large Subunit (ilvB) is similar to the structure of this domain in the catalytic subunit of yeast AHAS. Protein-protein interactions involving the regulatory subunit (ilvN) and the domains of the catalytic subunit (ilvB) were studied using circular dichroic and isotope edited solution nuclear magnetic resonance spectroscopic methods. Observed changes in circular dichroic spectra indicate that the regulatory subunit (ilvN) interacts with ilvB alpha and ilvB beta domains of the catalytic subunit and not with the ilvB gamma domain. NMR chemical shift mapping methods show that ilvN binds close to the FAD binding site in ilvB beta and proximal to the intrasubunit ilvB alpha/ilvB beta domain interface. The implication of this interaction on the role of the regulatory subunit oil the activity of the holoenzyme is discussed. NMR studies of the regulatory domains show that these domains are structured in solution. Preliminary evidence for the interaction of ilvN with the metabolic end product of the pathway, viz., valine is also presented.
Resumo:
Nature has used the all-alpha-polypeptide backbone of proteins to create a remarkable diversity of folded structures. Sequential patterns of 20 distinct amino adds, which differ only in their side chains, determine the shape and form of proteins. Our understanding of these specific secondary structures is over half a century old and is based primarily on the fundamental elements: the Pauling alpha-helix and beta-sheet. Researchers can also generate structural diversity through the synthesis of polypeptide chains containing homologated (omega) amino acid residues, which contain a variable number of backbone atoms. However, incorporating amino adds with more atoms within the backbone introduces additional torsional freedom into the structure, which can complicate the structural analysis. Fortunately, gabapentin (Gpn), a readily available bulk drug, is an achiral beta,beta-disubstituted gamma amino add residue that contains a cyclohexyl ring at the C-beta carbon atom, which dramatically limits the range of torsion angles that can be obtained about the flanking C-C bonds. Limiting conformational flexibility also has the desirable effect of increasing peptide crystallinity, which permits unambiguous structural characterization by X-ray diffraction methods. This Account describes studies carried out in our laboratory that establish Gpn as a valuable residue in the design of specifically folded hybrid peptide structures. The insertion of additional atoms into polypeptide backbones facilitates the formation of intramolecular hydrogen bonds whose directionality is opposite to that observed in canonical alpha-peptide helices. If hybrid structures mimic proteins and biologically active peptides, the proteolytic stability conferred by unusual backbones can be a major advantage in the area of medicinal chemistry. We have demonstrated a variety of internally hydrogen-bonded structures in the solid state for Gpn-containing peptides, including the characterization of the C-7 and C-9 hydrogen bonds, which can lead to ribbons in homo-oligomeric sequences. In hybrid alpha gamma sequences, district C-12 hydrogen-bonded turn structures support formation of peptide helices and hairpins in longer sequences. Some peptides that include the Gpn residue have hydrogen-bond directionality that matches alpha-peptide helices, while others have the opposite directionality. We expect that expansion of the polypeptide backbone will lead to new classes of foldamer structures, which are thus far unknown to the world of alpha-polypeptides. The diversity of internally hydrogen-bonded structures observed in hybrid sequences containing Gpn shows promise for the rational design of novel peptide structures incorporating hybrid backbones.
Resumo:
We report our findings on the quantum phase transitions in cold bosonic atoms in a one-dimensional optical lattice using the finite-size density-matrix renormalization-group method in the framework of the extended Bose-Hubbard model. We consider wide ranges of values for the filling factors and the nearest-neighbor interactions. At commensurate fillings, we obtain two different types of charge-density wave phases and a Mott insulator phase. However, departure from commensurate fillings yields the exotic supersolid phase where both the crystalline and the superfluid orders coexist. In addition, we obtain the signatures for the solitary waves and the superfluid phase.