250 resultados para Rotating Inertia.
Resumo:
Here we extend the exploration of significantly super-Chandrasekhar magnetized white dwarfs by numerically computing axisymmetric stationary equilibria of differentially rotating magnetized polytropic compact stars in general relativity (GR), within the ideal magnetohydrodynamic regime. We use a general relativistic magnetohydrodynamic (GRMHD) framework that describes rotating and magnetized axisymmetric white dwarfs, choosing appropriate rotation laws and magnetic field profiles (toroidal and poloidal). The numerical procedure for finding solutions in this framework uses the 3 + 1 formalism of numerical relativity, implemented in the open source XNS code. We construct equilibrium sequences by varying different physical quantities in turn, and highlight the plausible existence of super-Chandrasekhar white dwarfs, with masses in the range of 2-3 solar mass, with central (deep interior) magnetic fields of the order of 10(14) G and differential rotation with surface time periods of about 1-10 s. We note that such white dwarfs are candidates for the progenitors of peculiar, overluminous Type Ia supernovae, to which observational evidence ascribes mass in the range 2.1-2.8 solar mass. We also present some interesting results related to the structure of such white dwarfs, especially the existence of polar hollows in special cases.
Resumo:
The magnetic field in rapidly rotating dynamos is spatially inhomogeneous. The axial variation of the magnetic field is of particular importance because tall columnar vortices aligned with the rotation axis form at the onset of convection. The classical picture of magnetoconvection with constant or axially varying magnetic fields is that the Rayleigh number and wavenumber at onset decrease appreciably from their non-magnetic values. Nonlinear dynamo simulations show that the axial lengthscale of the self-generated azimuthal magnetic field becomes progressively smaller as we move towards a rapidly rotating regime. With a small-scale field, however, the magnetic control of convection is different from that in previous studies with a uniform or large-scale field. This study looks at the competing viscous and magnetic mode instabilities when the Ekman number E (ratio of viscous to Coriolis forces) is small. As the applied magnetic field strength (measured by the Elsasser number Lambda) increases, the critical Rayleigh number for onset of convection initially increases in a viscous branch, reaches an apex where both viscous and magnetic instabilities co-exist, and then falls in the magnetic branch. The magnetic mode of onset is notable for its dramatic suppression of convection in the bulk of the fluid layer where the field is weak. The viscous-magnetic mode transition occurs at Lambda similar to 1, which implies that small-scale convection can exist at field strengths higher than previously thought. In spherical shell dynamos with basal heating, convection near the tangent cylinder is likely to be in the magnetic mode. The wavenumber of convection is only slightly reduced by the self-generated magnetic field at Lambda similar to 1, in agreement with previous planetary dynamo models. The back reaction of the magnetic field on the flow is, however, visible in the difference in kinetic helicity between cyclonic and anticyclonic vortices.
Resumo:
This paper deals with the study of the nonlinear dynamics of a rotating flexible link modeled as a one dimensional beam, undergoing large deformation and with geometric nonlinearities. The partial differential equation of motion is discretized using a finite element approach to yield four nonlinear, nonautonomous and coupled ordinary differential equations (ODEs). The equations are nondimensionalized using two characteristic velocities-the speed of sound in the material and a velocity associated with the transverse bending vibration of the beam. The method of multiple scales is used to perform a detailed study of the system. A set of four autonomous equations of the first-order are derived considering primary resonances of the external excitation and one-to-one internal resonances between the natural frequencies of the equations. Numerical simulations show that for certain ranges of values of these characteristic velocities, the slow flow equations can exhibit chaotic motions. The numerical simulations and the results are related to a rotating wind turbine blade and the approach can be used for the study of the nonlinear dynamics of a single link flexible manipulator.
Resumo:
In this paper, we seek to find nonrotating beams that are isospectral to a given tapered rotating beam. Isospectral structures have identical natural frequencies. We assume the mass and stiffness distributions of the tapered rotating beam to be polynomial functions of span. Such polynomial variations of mass and stiffness are typical of helicopter and wind turbine blades. We use the Barcilon-Gottlieb transformation to convert the fourth-order governing equations of the rotating and the nonrotating beams, from the (x, Y) frame of reference to a hypothetical (z, U) frame of reference. If the coefficients of both the equations in the (z, U) frame match with each other, then the nonrotating beam is isospectral to the given rotating beam. The conditions on matching the coefficients lead to a pair of coupled differential equations. Wesolve these coupled differential equations numerically using the fourth-order Runge-Kutta scheme. We also verify that the frequencies (given in the literature) of standard tapered rotating beams are the frequencies (obtained using the finite-element analysis) of the isospectral nonrotating beams. Finally, we present an example of beams having a rectangular cross-section to show the application of our analysis. Since experimental determination of rotating beam frequencies is a difficult task, experiments can be easily conducted on these isospectral nonrotating beams to calculate the frequencies of the rotating beam.
Resumo:
We consider an axially loaded Timoshenko rotor rotating at a constant speed and derive its governing equations from a continuum viewpoint. The primary aim of this paper is to understand the source and role of gyroscopic terms, when the rotor is viewed not as a Timoshenko beam but as a genuine 3D continuum. We offer the primary insight that macroscopically observed gyroscopic terms may also, quite equivalently, be viewed as external manifestations of internally existing spin-induced prestresses at the continuum level. To demonstrate this idea with an analytical example (the Timoshenko rotor), we have studied the reliable equations of Choi et al. (Journal of Vibration and Acoustics, 114, 1992, 249-259). Using a straightforward application of our insight in the framework of nonlinear elasticity, we obtain equations that exactly match Choi et al. for the case with no axial load. For the case of axial preload, our straightforward formulation leads to a slightly different set of equations that have negligible numerical consequence for solid rotors. However, we offer a macroscopic, intuitive, justification for modifying our formulation so as to obtain the exact equations of Choi et al. with the axial load included.
Resumo:
Vibrational stability of large flexible structurally damped spacecraft carrying internal angular momentum and undergoing large rigid body rotations is analysed modeling the systems as elastic continua. Initially, analytical solutions to the motion of rigid gyrostats under torque-free conditions are developed. The solutions to the gyrostats modeled as axisymmetric and triaxial spacecraft carrying three and two constant speed momentum wheels, respectively, with spin axes aligned with body principal axes are shown to be complicated. These represent extensions of solutions for simpler cases existing in the literature. Using these solutions and modal analysis, the vibrational equations are reduced to linear ordinary differential equations. Equations with periodically varying coefficients are analysed applying Floquet theory. Study of a few typical beam- and plate-like spacecraft configurations indicate that the introduction of a single reaction wheel into an axisymmetric satellite does not alter the stability criterion. However, introduction of constant speed rotors deteriorates vibrational stability. Effects of structural damping and vehicle inertia ratio are also studied.
Resumo:
The magnetohydrodynamics (MHD) flow of a conducting, homogeneous incompressible Rivlin-Ericksen fluid of second grade contained between two infinite, parallel, insulated disks rotating with the same angular velocity about two noncoincident axes, under the application of a uniform transverse magnetic field, is investigated. This model represents the MHD flow of the fluid in the instrument called an orthogonal rheometer, except for the fact that in the rheometer the rotating plates are necessarily finite. An exact solution of the governing equations of motion is presented. The force components in the x and y directions on the disks are calculated. The effects of magnetic field and the viscoelastic parameter on the forces are discussed in detail.
Resumo:
The so-called “Scheme of Squares”, displaying an interconnectivity of heterogeneous electron transfer and homogeneous (e.g., proton transfer) reactions, is analysed. Explicit expressions for the various partial currents under potentiostatic conditions are given. The formalism is applicable to several electrode geometries and models (e.g., semi-infinite linear diffusion, rotating disk electrodes, spherical or cylindrical systems) and the analysis is exact. The steady-state (t→∞) expressions for the current are directly given in terms of constant matrices whereas the transients are obtained as Laplace transforms that need to be inverted by approximation of numerical methods. The methodology employs a systems approach which replaces a system of partial differential equations (governing the concentrations of the several electroactive species) by an equivalent set of difference equations obeyed by the various partial currents.
Resumo:
We extend here the formalism developed in Part I (for the potentiostatic response) to the admittance analysis of the scheme of squares. The results are applicable, as before, to several configurations of the electrode such as the rotating disk or the planar. All that one has to do is “to plug in” the appropriate matrices relating the interfacial concentrations to the fluxes.
Resumo:
A new technique has been devised to achieve a steady-state polarisation of a stationary electrode with a helical shaft rotating coaxial to it. A simplified theory for the convective hydrodynamics prevalent under these conditions has been formulated. Experimental data are presented to verify the steady-state character of the current-potential curves and the predicted dependence of the limiting current on the rotation speed of the rotor, the bulk concentration of the depolariser and the viscosity of the solution. Promising features of the multiple-segment electrodes concentric to a central disc electrode are pointed out.
Time dependent rotational flow of a viscous fluid over an infinite porous disk with a magnetic field
Resumo:
Both the semi-similar and self-similar flows due to a viscous fluid rotating with time dependent angular velocity over a porous disk of large radius at rest with or without a magnetic field are investigated. For the self-similar case the resulting equations for the suction and no mass transfer cases are solved numerically by quasilinearization method whereas for the semi-similar case and injection in the self-similar case an implicit finite difference method with Newton's linearization is employed. For rapid deceleration of fluid and for moderate suction in the case of self-similar flow there exists a layer of fluid, close to the disk surface where the sense of rotation is opposite to that of the fluid rotating far away. The velocity profiles in the absence of magnetic field are found to be oscillatory except for suction. For the accelerating freestream, (semi-similar flow) the effect of time is to reduce the amplitude of the oscillations of the velocity components. On the other hand the effect of time for the oscillating case is just the opposite.
Resumo:
We consider models for the rheology of dense, slowly deforming granular materials based of classical and Cosserat plasticity, and their viscoplastic extensions that account for small but finite particle inertia. We determine the scale for the viscosity by expanding the stress in a dimensionless parameter that is a measure of the particle inertia. We write the constitutive relations for classical and Cosserat plasticity in stress-explicit form. The viscoplastic extensions are made by adding a rate-dependent viscous stress to the plasticity stress. We apply the models to plane Couette flow, and show that the classical plasticity and viscoplasticity models have features that depart from experimental observations; the prediction of the Cosserat viscoplasticity model is qualitatively similar to that of Cosserat plasticity, but the viscosities modulate the thickness of the shear layer.
Resumo:
Bond graph is an apt modelling tool for any system working across multiple energy domains. Power electronics system modelling is usually the study of the interplay of energy in the domains of electrical, mechanical, magnetic and thermal. The usefulness of bond graph modelling in power electronic field has been realised by researchers. Consequently in the last couple of decades, there has been a steadily increasing effort in developing simulation tools for bond graph modelling that are specially suited for power electronic study. For modelling rotating magnetic fields in electromagnetic machine models, a support for vector variables is essential. Unfortunately, all bond graph simulation tools presently provide support only for scalar variables. We propose an approach to provide complex variable and vector support to bond graph such that it will enable modelling of polyphase electromagnetic and spatial vector systems. We also introduced a rotary gyrator element and use it along with the switched junction for developing the complex/vector variable's toolbox. This approach is implemented by developing a complex S-function tool box in Simulink inside a MATLAB environment This choice has been made so as to synthesise the speed of S-function, the user friendliness of Simulink and the popularity of MATLAB.
Resumo:
The laminar flow of a fairly concentrated suspension (in which the volume fraction Z of the solid particles < 0.4) in a spatially varying periodically curved pipe has been examined numerically. Unlike the case of interacting suspension flows, the particles are found to flow in a well-mixed fashion, altering both the axial and circumferential velocities and consequently the fluid flux in the tube, depending on their diffusivity and inertia. The magnitude of shear stress at the wall is enhanced, suggesting that, if applied to vascular system, the vascular wall could be prone to ulceration during pathological situations like polycythemia. The delay in adaptation of the deviation in Poiseuille flow velocity to the curvature changes is also discussed in detail.
Resumo:
The unsteady pseudo plane motions have been investigated in which each point of the parallel planes is subjected to non-torsional oscillations in their own plane and at any given instant the streamlines are concentric circles. Exact solutions are obtained and the form of the curve , the locus of the centers of these concentric circles, is discussed. The existence of three infinite sets of exact solutions, for the flow in the geometry of an orthogonal rheometer in which the above non-torsional oscillations are superposed on the disks, is established. Three cases arise according to whether is greater than, equal to or less than , where is angular velocity of the basic rotation and is the frequency of the superposed oscillations. For a symmetric solution of the flow these solutions reduce to a single unique solution. The nature of the curve is illustrated graphically by considering an example of the flow between coaxial rotating disks.