218 resultados para Resonance Weight
Resumo:
The temperature dependence of the chlorine-35 n.q.r. in the mercuric chloride-4-picoline N-oxide complex has been studied from 77 K to room temperature, and the results are used to assign the observed frequencies to terminal and bridging chlorines.
Resumo:
The α→γ→α→β transitions of para-dichlorobenzene have been studied by employing infrared and n.q.r. spectroscopy as well as differential scanning calorimetry. The γ phase is associated with considerably higher values of some of the intramolecular vibration frequencies. The α→γ transition shows athermal nucleation behaviour as in martensitic transitions. Intermolecular vibration bands around 46 and 85 cm–1 present in γ and α phases disappear in the β phase. The α→β transition seems to be associated with some orientational disorder.
Resumo:
In this paper time-resolved resonance Raman (TR3) spectra of intermediates generated by proton induced electron-transfer reaction between triplet 2-methoxynaphthalene ((ROMe)-R-3) and decafluorobenzophenone (DFBP) are presented The TR3 vibrational spectra and structure of 2-methoxynaphthalene cation radical (ROMe+) have been analyzed by density functional theory (DFT) calculation It is observed that the structure of naphthalene ring of ROMe+ deviates from the structure of cation radical of naphthalene
Resumo:
13 C resonances of carbonyl and methyl groups in amides are shifted down-field on interaction with alkali and alkaline earth metal salts. The magnitude of the shift depends on the ionic potential of the cation. Ions like Li+ bind to the amide carbonyl group both in neat amide solutions as well as in concentrated salt solutions in water.
Resumo:
To understand the effect of molecular weight and branching on the heats of vaporization (AH,) and their flow behavior, AH, and viscosity (7) were measured at different temperatures in the high molecular weight ester series: linear flexible di-n-alkyl sebacates and compact branched triglycerides with molecular weight ranging from 300 to 900. AHv" values (AHv corrected to 298 K) have been obtained with experimental AH, and also computed according to the group additivity method; a smaller-CH,- group value of 3.8 kJ mol-' compared to the normal value of 5.0 kJ mol-' is found to give good agreement with the experimental data (within 2-5% error). Both ester series have the same AH," irrespective of their molecular features, namely,shape, flexibility, and polarity, suggesting the coiling of the molecules during vaporization. The segmental motion of these ester series during their flow and its dependence on their molecular features unlike AH,' are demonstrated by the correlation of the enthalpy of activation for viscous flow (AH*) and the ratio AE,/AH* = n (AE, is the energy of vaporization) with molecular weight.
Resumo:
Cycloheximide-ribosome interactions from sensitive and resistant organisms were studied by proton magnetic resonance spectroscopic techniques. The two methyl resonances of cycloheximide upon interaction with ribosomes from Saccharomyces cerevisiae showed preferential broadening. Comparison of cycloheximide line broadening as effected by ribosomes from S. cerevisiae (sensitive) and Microsporum canis (resistant) revealed that less cycloheximide is bound to the M. canis ribosomes. From the decrease in line broadening observed with increasing temperature it may be concluded that cycloheximide-ribosome interaction is a fast exchange reaction. Tetracycline did not compete with cycloheximide for binding site(s) on the ribosomes of S. cerevisiae.
Resumo:
The conformation and stability of pearl millet prolamin (pennisetin) were examined by using circular dichroism and C-13 nuclear magnetic resonance spectroscopy. The far UV spectrum of pennisetin in 70% (v/v) aqueous ethanol showed the presence of predominant alpha-helical structure and its occurrence in the alpha + beta class of protein. The far and near UV spectra of pennisetin in ethanol: trifluoroethanol also supported this observation. However pennisetin showed the presence of some helical structure in 8 M urea which is known to be a highly unordered structure forming solvent. A decrease in alpha helical content of native pennisetin was observed with rise in temperature from 5-75-degrees-C and this effect of temperature was found to be reversible. A C-13 NMR spectrum of pennisetin in 70% ethanol suggested a high degree of molecular mobility in ethanol. Comparison of the cross polarization spectrum with the single pulse excitation spectrum suggested pennisetin to be a heterogeneous protein.
Resumo:
In this article, a minimum weight design of carbon/epoxy laminates is carried out using genetic algorithms. New failure envelopes have been developed by the combination of two commonly used phenomenological failure criteria, namely Maximum Stress (MS) and Tsai-Wu (TW) are used to obtain the minimum weight of the laminate. These failure envelopes are the most conservative failure envelope (MCFE) and the least conservative failure envelope (LCFE). Uniaxial and biaxial loading conditions are considered for the study and the differences in the optimal weight of the laminate are compared for the MCFE and LCFE. The MCFE can be used for design of critical load-carrying composites, while the LCFE could be used for the design of composite structures where weight reduction is much more important than safety such as unmanned air vehicles.
Resumo:
Sequence specific resonance assignment constitutes an important step towards high-resolution structure determination of proteins by NMR and is aided by selective identification and assignment of amino acid types. The traditional approach to selective labeling yields only the chemical shifts of the particular amino acid being selected and does not help in establishing a link between adjacent residues along the polypeptide chain, which is important for sequential assignments. An alternative approach is the method of amino acid selective `unlabeling' or reverse labeling, which involves selective unlabeling of specific amino acid types against a uniformly C-13/N-15 labeled background. Based on this method, we present a novel approach for sequential assignments in proteins. The method involves a new NMR experiment named, {(CO)-C-12 (i) -N-15 (i+1)}-filtered HSQC, which aids in linking the H-1(N)/N-15 resonances of the selectively unlabeled residue, i, and its C-terminal neighbor, i + 1, in HN-detected double and triple resonance spectra. This leads to the assignment of a tri-peptide segment from the knowledge of the amino acid types of residues: i - 1, i and i + 1, thereby speeding up the sequential assignment process. The method has the advantage of being relatively inexpensive, applicable to H-2 labeled protein and can be coupled with cell-free synthesis and/or automated assignment approaches. A detailed survey involving unlabeling of different amino acid types individually or in pairs reveals that the proposed approach is also robust to misincorporation of N-14 at undesired sites. Taken together, this study represents the first application of selective unlabeling for sequence specific resonance assignments and opens up new avenues to using this methodology in protein structural studies.
Resumo:
We report on the X-band (similar to 9.43 GHz) electron paramagnetic resonance (EPR) investigations carried out on polycrystalline Ga1-xMnxSb (x=0.02). A strong EPR signal with an effective g factor (g(eff)) close to 2.00 was observed, suggesting that the ionic state of Mn which replaces Ga ion in the lattice, is Mn2+ attributable to Delta M=1 transition of the ionized Mn acceptor A(-), Mn (3d(5)). The apparent absence of EPR signal, typical for neutral Mn acceptor at g=2.7 suggests either no such centers are present or the signal broadens beyond detection limit. The temperature dependent EPR studies combined with dc magnetization data suggest the possible coexistence of antiferromagnetic and ferromagnetic phases at very low temperatures. (C) 2011 American Institute of Physics. doi:10.1063/1.3543983]
Resumo:
Single crystals of calcium hydrazine carboxylate, monohydrate have been studied by ESR of Mn2+ doped in the calcium sites. X-band ESR indicated a large crystal field splitting necessitating experiments at Q band. The analysis shows two magnetically inequivalent (but chemically equivalent) sites with g(xx) = 2.0042+/-0.0038, g(yy) = 2.0076 +/-00029, g(zz) =2.0314+/-0.001, A(zz) = 0.0099+/-0.0002 cm(-1), A(xx) = 0.0099+/-0.0002 cm(-1), A(yy) = 0.0082+/-0.0002cm(-1), D = 3/2D(zz) = 0.0558+/-0.0006cm(-1), and E = 1/2(D-xx-D-yy) = 0.0127+/-0.0002 cm(-1).One of the principal components of the crystal field, (D-zz), is found to be along the Ca<->Ca direction in the structure and a second one, (D-xx), along the perpendicular to the plane of the triangle formed by three neighbouring calciums. The A tensor is found to have an orientation different from that of the g and D tensors reflecting the low symmetry of the Ca2+ sites.
Resumo:
New vibrational Raman features characteristic to the conductive form of polyaniline have been observed with the near-infrared excitation at 1047 nm. Based on an analogy with the resonance Raman spectrum of Michler's ketone in the lowest excited triplet (T-1) state, we consider these features as due to a dynamic structure of a diimino-1,4-phenylene unit in the polyaniline chain exchanging a positive charge very rapidly. This consideration directly leads to a conducting mechanism in which a positive charge migrates from one nitrogen to the other through the conjugated chain of polyaniline.
Resumo:
The entry of the plant toxin ricin and its A- and B-subunits in model membranes in the presence as well as absence of monosialoganglioside (GM(1)) has been studied. Dioleoylphosphatidylcholine and 5-, 10-, and 12-doxyl- or 9,10-dibromophosphatidylcholines serve as quenchers of intrinsic tryptophan fluorescence of the proteins. The parallax method of Chattopadhyay and London [(1987) Biochemistry 26, 39-45] has been employed to measure the average membrane penetration depth of tryptophans of ricin and its B-chain and the actual depth of the sole Trp 211 in the A-chain. The results indicate that both of the chains as well as intact ricin penetrate the membrane deeply and the C-terminal end of the A-chain is well inside the bilayer, especially at pH 4.5. An extrinsic probe N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl) ethylenediamine (I-AEDANS) has been attached to Cys 259 of the A-chain, and the kinetics of penetration has been followed by monitoring the increase in AEDANS fluorescence at 480 nm. The insertion follows first-order kinetics, and the rate constant is higher at a lower pH. The energy transfer distance analysis between Trp 211 and AEDANS points out that the conformation of the A-chain changes as it inserts into the membrane. CD studies indicate that the helicity of the proteins increases after penetration, which implies that some of the unordered structure in the native protein is converted to the ordered form during this process. Hydrophobic forces seem to be responsible for stabilizing a particular protein conformation inside the membrane.