179 resultados para REACTOR KINETICS
Resumo:
The role of FSH and diurnal testosterone rhythms in specific germ cell transformations during spermatogenesis were investigated using DNA flow cytometry and morphometry of the seminiferous epithelium of the adult male bonnet monkey (Macaca radiata), the endogenous hormone levels of which were altered by two different protocols. (1) Active immunization of five monkeys for 290 days using ovine FSH adsorbed on Alhydrogel resulted in the neutralization of endogenous FSH, leaving the LH and diurnal testosterone rhythms normal. (2) Desensitization of the pituitary gonadotrophs of ten monkeys by chronically infusing gonadotrophin-releasing hormone analogue, buserelin (50 micrograms/day release rate), via an Alzet pump implant (s.c.) led to a 60-80% reduction in LH and FSH as well as total abolition of testosterone rhythms. The basal testosterone level (3.3 +/- 2.0 micrograms/l), however, was maintained in this group by way of an s.c. testosterone silicone elastomer implant. Both of the treatments caused significant (P < 0.01) nearly identical reduction in testicular biopsy scores, mitotic indices and daily sperm production rates compared with respective controls. The germ cell DNA flow cytometric profiles of the two treatment groups, however, were fundamentally different from each other. The pituitary-desensitized group exhibited a significant (P < 0.001) increase in 2C (spermatogonial) and decrease in 1C (round spermatid) populations while S-phase (preleptotene spermatocytes) and 4C (primary spermatocytes) populations were normal, indicating an arrest in meiosis caused presumably by the lack of increment in nocturnal serum testosterone. In contrast, in the FSH-immunized group, at day 80 when the FSH deprivation was total, the primary block appeared to be at the conversion of spermatogonia (2C) to cells in S-phase and primary spermatocytes (4C reduced by > 90%). In addition, at this time, although the round spermatid (1C) population was reduced by 65% (P < 0.01) the elongate spermatid (HC) population showed an increase of 52% (P < 0.05). This, taken together with the fact that sperm output in the ejaculate is reduced by 80%, suggests a blockade in spermiogenesis and spermiation. Administration of booster injections of oFSH at time-points at which the antibody titre was markedly low (at days 84 and 180) resulted in a transient resurgence in spermatogenesis (at day 180 and 228), and this again was blocked by day 290 when the FSH antibody titre increased.
Resumo:
Ceric ammonium sulfate, CAS, oxidizes naphthalene to 1,4-naphthoquinone in essentially quantitative yield in CH3CN-dil. H2SO4. Stoichiometric studies indicate that 6 mol of CAS are required for the oxidation of 1 mol of naphthalene to 1,4-naphthoquinone. Kinetic investigations reveal that the reaction takes place through initial formation of a 1:1 complex of naphthalene and cerium(IV) in an equilibrium step followed by slow decomposition of the complex to naphthalene radical cation. Kinetic results on the effects of acid strength, polarity of the medium, temperature and substituents are in accordance with this mechanism. Further conversion of the radical cation into 1,4-naphthoquinone takes place in fast steps involving a further 5 mol of cerium(IV) and 2 mol of H2O.
Resumo:
Octabromotetraphenylporphyrin adopts a severe saddle-shaped distorted structure owing to the steric crowding of heavy bromine substituents. The rate enhancement of porphyrin metalation reaction is primarily due to the nonplanarity of the ring while the electronic effect diminishes the affinity of the porphyrin towards metal ions.
Resumo:
Mutation and/or dysfunction of signaling proteins in the mitogen activated protein kinase (MAPK) signal transduction pathway are frequently observed in various kinds of human cancer. Consistent with this fact, in the present study, we experimentally observe that the epidermal growth factor (EGF) induced activation profile of MAP kinase signaling is not straightforward dose-dependent in the PC3 prostate cancer cells. To find out what parameters and reactions in the pathway are involved in this departure from the normal dose-dependency, a model-based pathway analysis is performed. The pathway is mathematically modeled with 28 rate equations yielding those many ordinary differential equations (ODE) with kinetic rate constants that have been reported to take random values in the existing literature. This has led to us treating the ODE model of the pathways kinetics as a random differential equations (RDE) system in which the parameters are random variables. We show that our RDE model captures the uncertainty in the kinetic rate constants as seen in the behavior of the experimental data and more importantly, upon simulation, exhibits the abnormal EGF dose-dependency of the activation profile of MAP kinase signaling in PC3 prostate cancer cells. The most likely set of values of the kinetic rate constants obtained from fitting the RDE model into the experimental data is then used in a direct transcription based dynamic optimization method for computing the changes needed in these kinetic rate constant values for the restoration of the normal EGF dose response. The last computation identifies the parameters, i.e., the kinetic rate constants in the RDE model, that are the most sensitive to the change in the EGF dose response behavior in the PC3 prostate cancer cells. The reactions in which these most sensitive parameters participate emerge as candidate drug targets on the signaling pathway. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The kinetics of the oxidation of electrodeposited boron powder and the boron powder produced by the reduction process were studied using thermogravimetry (TG). The oxidation was carried out by heating boron powder in a stream of oxygen. Both isothermal and non-isothermal methods were used to study the kinetics. Model-free isoconversional method was used to derive the kinetics parameters. A two step oxidation reaction (exothermic) was observed. The oxidation reaction could not be completed due to the formation of glassy layer of boric oxide on the surface of boron powder which acts as a barrier for further diffusion of oxygen into the particle. The activation energy obtained using model-free method for electrodeposited boron is 122 +/- 7 kJ mol(-1) whereas a value of 205 +/- 9 kJ mol(-1) was obtained for boron produced by the reduction process (commercially procured boron). Mechanistic interpretation of the oxidation reaction was done using model based method. The activation energy was found to depend on the size distribution of the particles and specific surface area of the powder. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Improved performance of plasma in raw engine exhaust treatment is reported. A new type of reactor referred to as of cross-flow dielectric barrier discharge (DBD) was used, in which the gas flow is perpendicular to the corona electrode. In raw exhaust environment, the cross-flow (radial-flow) reactor exhibits a superior performance with regard to NOX removal when compared to that with axial flow of gas. Experiments were conducted at different flow rates ranging from 2 L/min to 25 L/min. The plasma assisted barrier discharge reactor has shown encouraging results in NOx removal at high flow rates.
Resumo:
Enoyl acyl carrier protein reductase (ENR), which catalyzes the final and rate limiting step of fatty acid elongation, has been validated as a potential drug target. Triclosan is known to be an effective inhibitor for this enzyme. We mutated the substrate binding site residue Ala372 of the ENR of Plasmodium falciparum (PfENR) to Methionine and Valine which increased the affinity of the enzyme towards triclosan to almost double, close to that of Escherichia coli ENR (EcENR) which has a Methionine at the structurally similar position of Ala372 of PfENR. Kinetic studies of the mutants of PfENR and the crystal structure analysis of the A372M mutant revealed that a more hydrophobic environment enhances the affinity of the enzyme for the inhibitor. A triclosan derivative showed a threefold increase in the affinity towards the mutants compared to the wild type, due to additional interactions with the A372M mutant as revealed by the crystal structure. The enzyme has a conserved salt bridge which stabilizes the substrate binding loop and appears to be important for the active conformation of the enzyme. We generated a second set of mutants to check this hypothesis. These mutants showed loss of function, except in one case, where the crystal structure showed that the substrate binding loop is stabilized by a water bridge network. (C) 2011 IUBMB mum Life, 63(1): 30-41,2011
Resumo:
Ultrasonication of aqueous KI solution is known to yield I2 due to reaction of iodide ions with hydroxyl radicals, which in turn are generated due to cavitation. Based on this conceptual framework, a model has been developed to predict the rate of iodine formation for KI solutions of various concentrations under different gas atmospheres. The model follows the growth and collapse of a gas—vapour cavity using the Rayleigh—Plesset bubble dynamics equation. The bubble is assumed to behave isothermally during its growth phase and a part of the collapse phase. Thereafter it is assumed to collapse adiabatically, yielding high temperatures and pressures. Thermodynamic equilibrium is assumed in the bubble at the end of collapse phase. The contents of the bubble are assumed to mix with the liquid, and the reactor contents are assumed to be well stirred. The model has been verified by conducting experiments with KI solutions of different concentrations and using different gas atmospheres. The model not only explains these results but also the existence of a maximum when Ar---O2 mixtures of different compositions are employed.
Resumo:
Ultrasonication of aqueous KI solution is known to yield I2 due to reaction of iodide ions with hydroxyl radicals, which in turn are generated due to cavitation. Based on this conceptual framework, a model has been developed to predict the rate of iodine formation for KI solutions of various concentrations under different gas atmospheres. The model follows the growth and collapse of a gas-vapour cavity using the Rayleigh-Plesset bubble dynamics equation. The bubble is assumed to behave isothermally during its growth phase and a part of the collapse phase. Thereafter it is assumed to collapse adiabatically, yielding high temperatures and pressures. Thermodynamic equilibrium is assumed in the bubble at the end of collapse phase. The contents of the bubble are assumed to mix with the liquid, and the reactor contents are assumed to be well stirred. The model has been verified by conducting experiments with KI solutions of different concentrations and using different gas atmospheres. The model not only explains these results but also the existence of a maximum when Ar-O2 mixtures of different compositions are employed.
Resumo:
One of the scientific challenges of growing InN quantum dots (QDs), using Molecular beam epitaxy (MBE), is to understand the fundamental processes that control the morphology and distribution of QDs. A systematic manipulation of the morphology, optical emission, and structural properties of InN/Si (111) QDs is demonstrated by changing the growth kinetics parameters such as flux rate and growth time. Due to the large lattice mismatch, between InN and Si (similar to 8%), the dots formed from the Strannski-Krastanow (S-K) growth mode are dislocated. Despite the variations in strain (residual) and the shape, both the dot size and pair separation distribution show the scaling behavior. We observed that the distribution of dot sizes, for samples grown under varying conditions, follow the scaling function.
Resumo:
The degradation of the dye, Orange G, was carried out in the presence of H2O2 and Pd-substituted/impregnated CeO2. The effects of pH, initial dye concentration, initial H2O2 concentration, temperature, catalyst loading, and Pd content in the catalyst on the degradation of the dye were investigated. Eight to twelve percent degradation of the dye was obtained in 1 h when the reaction was carried out in the presence of CeO2 or H2O2 or Pd-substituted/impregnated CeO2 while 17% and 97% degradation was obtained when H2O2 was used with Pd-impregnated CeO2 and Pd-substituted CeO2, respectively. This difference clearly indicated that the ionic substitution of Pd played a key role in the degradation of the dye. A mechanism for the reaction was proposed based upon the catalyst structure and the electron transfer processes that take place in the metal ion substituted system in a reducible oxide. The reaction was found to follow first order kinetics and the influence of all the parameters on the degradation kinetics was compared using the rate constants. (c) 2011 Elsevier B.V. All rights reserved.
Leak Detection In Pressure Tubes Of A Pressurized Heavy-Water Reactor By Acoustic-Emission Technique
Resumo:
Leak detection in the fuel channels is one of the challenging problems during the in-service inspection (ISI) of Pressurised Heavy Water Reactors (PHWRs). In this paper, the use of an acoustic emission (AE) technique together with AE signal analysis is described, to detect a leak that was ncountered in one (or more) of the 306 fuel channels of the Madras Atomic Power Station (PHWR), Unit I. The paper describes the problems encountered during the ISI, the experimental methods adopted and the results obtained. Results obtained using acoustic emission signal analysis are compared with those obtained from other leak detection methods used in such cases.
Resumo:
Hydrolytic polymerization of caprolactam to Nylon 6 in a semibatch reactor is carried out by heating a mixture of water and caprolactam. Evaporation of volatiles caused by heating results in a pressure build-up. After the pressure reaches a predetermined value, vapors are vented to keep the pressure constant for some time, and thereafter, to lower the pressure to a value slightly above atmospheric in a preprogrammed manner. The characteristics of the polymer are determined by the chemical reactions and the vaporization of water and caprolactam. The semibatch operation has been simulated and the predictions have been compared with industria data. The observed temperature and pressure histories were predicted with a fair degree of accuracy. It was found that the predictions of the degree of polymerization however are sensitive to the vapor-liquid equilibrium relations. A comparison with an earlier model, which neglected mass transfer resistance, indicates that simulation using the VLE data of Giori and Hayes and accounting for mass transfer resistance is more reliable.
Resumo:
Static disorder has recently been implicated in the non-exponential kinetics of the unfolding of single molecules of poly-ubiquitin under a constant force Kuo, Garcia-Manyes, Li, Barel, Lu, Berne, Urbakh, Klafter, and Fernandez, Proc. Natl. Acad. Sci. U. S. A. 107, 11336 (2010)]. In the present paper, it is suggested that dynamic disorder may provide a plausible, alternative description of the experimental observations. This suggestion is made on the basis of a model in which the barrier to chain unfolding is assumed to be modulated by a control parameter r that evolves in a parabolic potential under the action of fractional Gaussian noise according to a generalized Langevin equation. The treatment of dynamic disorder within this model is pursued using Zwanzig's indirect approach to noise averaging Acc. Chem. Res. 23, 148 (1990)]. In conjunction with a self-consistent closure scheme developed by Wilemski and Fixman J. Chem. Phys. 58, 4009 (1973); ibid. 60, 866 (1974)], this approach eventually leads to an expression for the chain unfolding probability that can be made to fit the corresponding experimental data very closely. (C) 2011 American Institute of Physics.