209 resultados para RADIATION PROBLEM


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the 4d-XY (X, Y = 5p, 4f, and the conduction band) Auger spectra of clean Gd using a monochromatic photon source with energies above and below the 3d threshold. The spectra with higher hv show the existence of intense spectator-hole Auger transitions. Comparison of these spectra with those obtained with a primary electron source allows detailed interpretation of the various features and explains the unusual spin polarization of the electron-induced spectrum reported earlier.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerous reports from several parts of the world have confirmed that on calm clear nights a minimum in air temperature can occur just above ground, at heights of the order of $\frac{1}{2}$ m or less. This phenomenon, first observed by Ramdas & Atmanathan (1932), carries the associated paradox of an apparently unstable layer that sustains itself for several hours, and has not so far been satisfactorily explained. We formulate here a theory that considers energy balance between radiation, conduction and free or forced convection in humid air, with surface temperature, humidity and wind incorporated into an appropriate mathematical model as parameters. A complete numerical solution of the coupled air-soil problem is used to validate an approach that specifies the surface temperature boundary condition through a cooling rate parameter. Utilizing a flux-emissivity scheme for computing radiative transfer, the model is numerically solved for various values of turbulent friction velocity. It is shown that a lifted minimum is predicted by the model for values of ground emissivity not too close to unity, and for sufficiently low surface cooling rates and eddy transport. Agreement with observation for reasonable values of the parameters is demonstrated. A heuristic argument is offered to show that radiation substantially increases the critical Rayleigh number for convection, thus circumventing or weakening Rayleigh-Benard instability. The model highlights the key role played by two parameters generally ignored in explanations of the phenomenon, namely surface emissivity and soil thermal conductivity, and shows that it is unnecessary to invoke the presence of such particulate constituents as haze to produce a lifted minimum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study change in the polarization of electromagnetic waves due to the stimulated Raman scattering in a plasma. In this process an electromagnetic wave undergoes coherent scattering off an electron plasma wave. It is found that some of the observed polarization properties such as the rapid temporal variations, sense reversal, rotation of the plane of polarization, and change of nature of polarization in the case of pulsars and quasars could be accounted for through stimulated Raman scattering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study large-scale kinematic dynamo action due to turbulence in the presence of a linear shear flow in the low-conductivity limit. Our treatment is non-perturbative in the shear strength and makes systematic use of both the shearing coordinate transformation and the Galilean invariance of the linear shear flow. The velocity fluctuations are assumed to have low magnetic Reynolds number (Re-m), but could have arbitrary fluid Reynolds number. The equation for the magnetic fluctuations is expanded perturbatively in the small quantity, Re-m. Our principal results are as follows: (i) the magnetic fluctuations are determined to the lowest order in Rem by explicit calculation of the resistive Green's function for the linear shear flow; (ii) the mean electromotive force is then calculated and an integro-differential equation is derived for the time evolution of the mean magnetic field. In this equation, velocity fluctuations contribute to two different kinds of terms, the 'C' and 'D' terms, respectively, in which first and second spatial derivatives of the mean magnetic field, respectively, appear inside the space-time integrals; (iii) the contribution of the D term is such that its contribution to the time evolution of the cross-shear components of the mean field does not depend on any other components except itself. Therefore, to the lowest order in Re-m, but to all orders in the shear strength, the D term cannot give rise to a shear-current-assisted dynamo effect; (iv) casting the integro-differential equation in Fourier space, we show that the normal modes of the theory are a set of shearing waves, labelled by their sheared wavevectors; (v) the integral kernels are expressed in terms of the velocity-spectrum tensor, which is the fundamental dynamical quantity that needs to be specified to complete the integro-differential equation description of the time evolution of the mean magnetic field; (vi) the C term couples different components of the mean magnetic field, so they can, in principle, give rise to a shear-current-type effect. We discuss the application to a slowly varying magnetic field, where it can be shown that forced non-helical velocity dynamics at low fluid Reynolds number does not result in a shear-current-assisted dynamo effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new feature-based technique is introduced to solve the nonlinear forward problem (FP) of the electrical capacitance tomography with the target application of monitoring the metal fill profile in the lost foam casting process. The new technique is based on combining a linear solution to the FP and a correction factor (CF). The CF is estimated using an artificial neural network (ANN) trained using key features extracted from the metal distribution. The CF adjusts the linear solution of the FP to account for the nonlinear effects caused by the shielding effects of the metal. This approach shows promising results and avoids the curse of dimensionality through the use of features and not the actual metal distribution to train the ANN. The ANN is trained using nine features extracted from the metal distributions as input. The expected sensors readings are generated using ANSYS software. The performance of the ANN for the training and testing data was satisfactory, with an average root-mean-square error equal to 2.2%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The modulational instability of a large-amplitude, linearly polarized electromagnetic wave propagating in an electron-positron plasma is considered, including the combined effect of relativistic mass variation of the plasma particles, harmonic generation, and the non-resonant, finite-frequency electrostatic density perturbations, all caused by the large-amplitude radiation field. The radiation from many strong sources, such as AGN and pulsars, has been observed to vary over a host of time-scales. It is possible that the extremely rapid variations in the non-thermal continuum of AGN, as well as in the non-thermal radio radiation from pulsars, can be accounted for by the modulational instabilities to which radiation may be subjected during its propagation out of the emission region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with the direct position kinematics problem of a general 6-6 Stewart platform, the complete solution of which is not reported in the literature until now and even establishing the number of possible solutions for the general case has remained an unsolved problem for a long period. Here a canonical formulation of the direct position kinematics problem for a general 6-6 Stewart platform is presented. The kinematic equations are expressed as a system of six quadratic and three linear equations in nine unknowns, which has a maximum of 64 solutions. Thus, it is established that the mechanism, in general, can have up to 64 closures. Further reduction of the system is shown arriving at a set of three quartic equations in three unknowns, the solution of which will yield the assembly configurations of the general Stewart platform with far less computational effort compared to earlier models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a natural framework for studying the persistence problem in two-dimensional fluid turbulence by using the Okubo-Weiss parameter Lambda to distinguish between vortical and extensional regions. We then use a direct numerical simulation of the two-dimensional, incompressible Navier-Stokes equation with Ekman friction to study probability distribution functions (PDFs) of the persistence times of vortical and extensional regions by employing both Eulerian and Lagrangian measurements. We find that, in the Eulerian case, the persistence-time PDFs have exponential tails; by contrast, this PDF for Lagrangian particles, in vortical regions, has a power-law tail with an exponent theta = 2.9 +/- 0.2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semiconductor based nanoscale heterostructures are promising candidates for photocatalytic and photovoltaic applications with the sensitization of a wide bandgap semiconductor with a narrow bandgap material being the most viable strategy to maximize the utilization of the solar spectrum. Here, we present a simple wet chemical route to obtain nanoscale heterostructures of ZnO/CdS without using any molecular linker. Our method involves the nucleation of a Cd-precursor on ZnO nanorods with a subsequent sulfidation step leading to the formation of the ZnO/CdS nanoscale heterostructures. Excellent control over the loading of CdS and the microstructure is realized by merely changing the initial concentration of the sulfiding agent. We show that the heterostructures with the lowest CdS loading exhibit an exceptionally high activity for the degradation of methylene blue (MB) under solar irradiation conditions; microstructural and surface analysis reveals that the higher activity in this case is related to the dispersion of the CdS nanoparticles on the ZnO nanorod surface and to the higher concentration of surface hydroxyl species. Detailed analysis of the mechanism of formation of the nanoscale heterostructures reveals that it is possible to obtain deterministic control over the nature of the interfaces. Our synthesis method is general and applicable for other heterostructures where the interfaces need to be engineered for optimal properties. In particular, the absence of any molecular linker at the interface makes our method appealing for photovoltaic applications where faster rates of electron transfer at the heterojunctions are highly desirable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an efficient Simulated Annealing with valid solution mechanism for finding an optimum conflict-free transmission schedule for a broadcast radio network. This is known as a Broadcast Scheduling Problem (BSP) and shown as an NP-complete problem, in earlier studies. Because of this NP-complete nature, earlier studies used genetic algorithms, mean field annealing, neural networks, factor graph and sum product algorithm, and sequential vertex coloring algorithm to obtain the solution. In our study, a valid solution mechanism is included in simulated annealing. Because of this inclusion, we are able to achieve better results even for networks with 100 nodes and 300 links. The results obtained using our methodology is compared with all the other earlier solution methods.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amorphous conducting carbon films are prepared by plasma assisted chemical vapour deposition and their d.c. conductivity (similar to 100 Scm(-1)) is studied from 300K down to 4.2K. The films were irradiated by high energy ion beam(I+13, 170 MeV) with a dose of 10(13) ions/cm(2). As a result a marked decrease in conductivity by two to three orders in magnitude was observed. The structural changes and the defects in the films caused by ion irradiation are studied using photoluminescence, persistent photoconductivity, and ESR spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laser processing of structure sensitive hypereutectic ductile iron, a cast alloy employed for dynamically loaded automative components, was experimentally investigated over a wide range of process parameters: from power (0.5-2.5 kW) and scan rate (7.5-25 mm s(-1)) leading to solid state transformation, all the way through to melting followed by rapid quenching. Superfine dendritic (at 10(5) degrees C s(-1)) or feathery (at 10(4) degrees C s(-1)) ledeburite of 0.2-0.25 mu m lamellar space, gamma-austenite and carbide in the laser melted and martensite in the transformed zone or heat-affected zone were observed, depending on the process parameters. Depth of geometric profiles of laser transformed or melt zone structures, parameters such as dendrile arm spacing, volume fraction of carbide and surface hardness bear a direct relationship with the energy intensity P/UDb2, (10-100 J mm(-3)). There is a minimum energy intensity threshold for solid state transformation hardening (0.2 J mm(-3)) and similarly for the initiation of superficial melting (9 J mm(-3)) and full melting (15 J mm(-3)) in the case of ductile iron. Simulation, modeling and thermal analysis of laser processing as a three-dimensional quasi-steady moving heat source problem by a finite difference method, considering temperature dependent energy absorptivity of the material to laser radiation, thermal and physical properties (kappa, rho, c(p)) and freezing under non-equilibrium conditions employing Scheil's equation to compute the proportion of the solid enabled determination of the thermal history of the laser treated zone. This includes assessment of the peak temperature attained at the surface, temperature gradients, the freezing time and rates as well as the geometric profile of the melted, transformed or heat-affected zone. Computed geometric profiles or depth are in close agreement with the experimental data, validating the numerical scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an earlier work, we had proposed a two-band, non-grey radiative transfer model for heat transfer in forehearths with simultaneous optically thick and thin approximations for molten glass interiors and at boundaries. Here using the same model, the radiative interaction of the top-crown and bottom-refractory walls with interior layers of shallow molten glass is studied by varying the wall emissivities. The forehearth exit temperature profiles for higher wall emissivities (0.9) show better conditioning of the glass for white flint glasses (optically thin).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that the problem of two anyons interacting through a simple harmonic potential or a Coulomb potential is supersymmetric. The supersymmetry operators map a theory described by statistics parameter θ to one described by π+θ. Thus fermions and bosons go into each other, while semions are supersymmetric by themselves. The simple harmonic problem has a Sp(4) symmetry for any value of θ which explains the energy degeneracies.