159 resultados para Presence


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The focus of this work is the evaluation and analysis of the state of dispersion of functionalized multiwall carbon nanotubes (CNTs), within different morphologies formed, in a model LCST blend (poly[(alpha-methylstyrene)-co-(acrylonitrile)]/poly(methyl-methacryla te), P alpha MSAN/PMMA). Blend compositions that are expected to yield droplet-matrix (85/15 P alpha MSAN/PMMA and 15/85 P alpha MSAN/PMMA, wt/wt) and co-continuous morphologies (60/40 P alpha MSAN/PMMA, wt/wt) upon phase separation have been combined with two types of CNTs; carboxylic acid functionalized (CNTCOOH) and polyethylene modified (CNTPE) up to 2 wt%. Thermally induced phase separation in the blends has been studied in-situ by rheology and dielectric (conductivity) spectroscopy in terms of morphological evolution and CNT percolation. The state of dispersion of CNTs has been evaluated by transmission electron microscopy. The experimental results indicate that the final blend morphology and the surface functionalization of CNT are the main factors that govern percolation. In presence of either of the CNTs, 60/40 P alpha MSAN/PMMA blends yield a droplet-matrix morphology rather than co-continuous and do not show any percolation. On the other hand, both 85/15 P alpha MSAN/PMMA and 15/85 P alpha MSAN/PMMA blends containing CNTPEs show percolation in the rheological and electrical properties. Interestingly, the conductivity spectroscopy measurements demonstrate that the 15/85 P alpha MSAN/PMMA blends with CNTPEs that show insulating properties at room temperature for the miscible blends reveal highly conducting properties in the phase separated blends (melt state) as a result of phase separation. By quenching this morphology, the conductivity can be retained in the blends even in the solid state. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes techniques to estimate the worst case execution time of executable code on architectures with data caches. The underlying mechanism is Abstract Interpretation, which is used for the dual purposes of tracking address computations and cache behavior. A simultaneous numeric and pointer analysis using an abstraction for discrete sets of values computes safe approximations of access addresses which are then used to predict cache behavior using Must Analysis. A heuristic is also proposed which generates likely worst case estimates. It can be used in soft real time systems and also for reasoning about the tightness of the safe estimate. The analysis methods can handle programs with non-affine access patterns, for which conventional Presburger Arithmetic formulations or Cache Miss Equations do not apply. The precision of the estimates is user-controlled and can be traded off against analysis time. Executables are analyzed directly, which, apart from enhancing precision, renders the method language independent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report one-pot hydrothermal synthesis of nearly mono-disperse 3-mercaptopropionic acid capped water-soluble cadmium telluride (CdTe) quantum dots (QDs) using an air stable Te source. The optical and electrical characteristics were also studied here. It was shown that the hydrothermal synthesis could be tuned to synthesize nano structures of uniform size close to nanometers. The emissions of the CdTe QDs thus synthesized were in the range of 500-700 nm by varying the duration of synthesis. The full width at half maximum (FWHM) of the emission peaks is relatively narrow (40-90 nm), which indicates a nearly uniform distribution of QD size. The structural and optical properties of the QDs were characterized by transmission electron microscopy (TEM), photoluminescence (PL) and Ultraviolet-visible (UV-Vis) spectroscopy. The photoluminescence quenching of CdTe QDs in the presence of L-cysteine and DNA confirms its biocompatibility and its utility for biosensing applications. The room temperature current-voltage characteristics of QD film on ITO coated glass substrate show an electrically induced switching between states with high and low conductivities. The phenomenon is explained on the basis of charge confinement in quantum dots. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, using 3-D device simulation, we perform an extensive gate to source/drain underlap optimization for the recently proposed hybrid transistor, HFinFET, to show that the underlap lengths can be suitably tuned to improve the ON-OFF ratio as well as the subthreshold characteristics in an ultrashort channel n-type device without significantON performance degradation. We also show that the underlap knob can be tuned to mitigate the device quality degradation in presence of interface traps. The obtained results are shown to be promising when compared against ITRS 2009 performance projections, as well as published state of the art planar and nonplanar Silicon MOSFET data of comparable gate lengths using standard benchmarking techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grey tracks produced in KTiOPO4 (KTP) by applying a dc electric field have been studied through optical absorption, Raman scattering, and synchrotron x‐ray topography. A study of the optical absorption and Raman scattering from the grey‐tracked region suggests that their formation is accompanied by changes in the electronic levels of Ti4+. There is no evidence for a major structural change or disorder in the grey‐tracked region. However, the x‐ray topographs do indicate the presence of a remnant strain in the lattice, which might contribute to the observed changes in the Raman intensities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In orthogonal frequency-division multiple access (OFDMA) on the uplink, the carrier frequency offsets (CFOs) and/or timing offsets (TOs) of other users with respect to a desired user can cause multiuser interference (MUI). Analytically evaluating the effect of these CFO/TO-induced MUI on the bit error rate (BER) performance is of interest. In this paper, we analyze the BER performance of uplink OFDMA in the presence of CFOs and TOs on Rician fading channels. A multicluster multipath channel model that is typical in indoor/ultrawideband and underwater acoustic channels is considered. Analytical BER expressions that quantify the degradation in BER due to the combined effect of both CFOs and TOs in uplink OFDMA with M-state quadrature amplitude modulation (QAM) are derived. Analytical and simulation BER results are shown to match very well. The derived BER expressions are shown to accurately quantify the performance degradation due to nonzero CFOs and TOs, which can serve as a useful tool in OFDMA system design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nanochemistry of calcium remains unexplored, which is largely due to the inaccessibility of calcium nanoparticles in an easy to handle form by conventional methods of synthesis as well as its highly reactive and pyrophoric nature. The synthesis of colloidal Ca nanoparticles by the solvated metal atom dispersion (SMAD) method is described. The as-prepared Ca-THF nanoparticles, which are polydisperse, undergo digestive ripening in the presence of a capping agent, hexadecyl amine (HDA) to afford highly monodisperse colloids consisting of 2-3 nm sized Ca-HDA nanoparticles. These are quite stable towards precipitation for long periods of time, thereby providing access to the study of the nanochemistry of Ca. Particles synthesized in this manner were characterized by UV-visible spectroscopy, high resolution electron microscopy, and powder X-ray diffraction methods. Under an electron beam, two adjacent Ca nanoparticles undergo coalescence to form a larger particle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A bacterium Bacillus polymyxa was found to be capable of selective removal of calcium and iron from bauxite. The bioleached residue was found to be enriched in its alumina content with insignificant amounts of iron and calcium as impurities. The developed bio- process was found to be capable of producing a bauxite product which meets the specifica- tions as a raw material for the manufacture of alumina based ceramics and refractories. The role of bacterial cells and metabolic products in the selective dissolution of calcium (present as calcite) and iron (present as hematite and goethite) from bauxite was assessed and possi- ble mechanisms illustrated. The effect of different parameters such as sucrose concentra- tion, pH, pulp density and time on selective biodissolution was studied. It was observed that periodic decantation and replenishment of the leach medium was beneficial in improving the dissolution kinetics. Calcium removal involves chelation with bacterial exopolysaccha- tides and acidolysis by organic acid generation. Hematite could be solubilized through a reductive dissolution mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An attempt is made to study the two dimensional (2D) effective electron mass (EEM) in quantum wells (Qws), inversion layers (ILs) and NIPI superlattices of Kane type semiconductors in the presence of strong external photoexcitation on the basis of a newly formulated electron dispersion laws within the framework of k.p. formalism. It has been found, taking InAs and InSb as examples, that the EEM in Qws, ILs and superlattices increases with increasing concentration, light intensity and wavelength of the incident light waves, respectively and the numerical magnitudes in each case is band structure dependent. The EEM in ILs is quantum number dependent exhibiting quantum jumps for specified values of the surface electric field and in NIPI superlattices; the same is the function of Fermi energy and the subband index characterizing such 2D structures. The appearance of the humps of the respective curves is due to the redistribution of the electrons among the quantized energy levels when the quantum numbers corresponding to the highest occupied level changes from one fixed value to the others. Although the EEM varies in various manners with all the variables as evident from all the curves, the rates of variations totally depend on the specific dispersion relation of the particular 2D structure. Under certain limiting conditions, all the results as derived in this paper get transformed into well known formulas of the EEM and the electron statistics in the absence of external photo-excitation and thus confirming the compatibility test. The results of this paper find three applications in the field of microstructures. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A central scheduling problem in wireless communications is that of allocating resources to one of many mobile stations that have a common radio channel. Much attention has been given to the design of efficient and fair scheduling schemes that are centrally controlled by a base station (BS) whose decisions depend on the channel conditions reported by each mobile. The BS is the only entity taking decisions in this framework. The decisions are based on the reports of mobiles on their radio channel conditions. In this paper, we study the scheduling problem from a game-theoretic perspective in which some of the mobiles may be noncooperative or strategic, and may not necessarily report their true channel conditions. We model this situation as a signaling game and study its equilibria. We demonstrate that the only Perfect Bayesian Equilibria (PBE) of the signaling game are of the babbling type: the noncooperative mobiles send signals independent of their channel states, the BS simply ignores them, and allocates channels based only on the prior information on the channel statistics. We then propose various approaches to enforce truthful signaling of the radio channel conditions: a pricing approach, an approach based on some knowledge of the mobiles' policies, and an approach that replaces this knowledge by a stochastic approximations approach that combines estimation and control. We further identify other equilibria that involve non-truthful signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The investigation of ternary solubilities of solids is essential for the efficient design of extraction processes. The ternary solubilities of solids for cosolvent and cosolute systems are complex functions of temperature, pressure and cosolvent/cosolute composition. The intermolecular interactions between the molecules have a significant role in the solubilities of mixed solids in SCCO2 and cosolvent ternary systems. Two model equations were developed for ternary SCCO2 + cosolvent/cosolute systems by using association and activity coefficient models. Both the model equations consist of five adjustable parameters and correlate the ternary solubilities of solids in terms of temperature, pressure, density and cosolvent/cosolute composition. The model equation for cosolvent systems correlated 43 solid pollutants-cosolvent-SCCO2, while the model equation for cosolute systems correlated 19 solute-cosolute-SCCO2 systems available in literature. The average AARD of the model equations are 4.73% and 4.87% for cosolvent ternary systems and mixed solids in SCCO2, respectively. (C) 2011 Elsevier B.V. All rights reserved.