159 resultados para Pipe fitting


Relevância:

10.00% 10.00%

Publicador:

Resumo:

More than six years after the great (M-w 9.2) Sumatra-Andaman earthquake, postevent processes responsible for relaxation of the coseismic stress change remain controversial. Modeling of Andaman Islands Global Positioning System (GPS) displacements indicated early near-field motions were dominated by slip down-dip of the rupture, but various researchers ascribe elements of relaxation to dominantly poroelastic, dominantly viscoelastic, and dominantly fault slip processes, depending primarily on their measurement sampling and modeling tools used. After subtracting a pre-2004 interseismic velocity, significant transient motion during the 2008.5-2010.5 epoch confirms that postseismic relaxation processes continue in Andaman. Modeling three-component velocities as viscoelastic flow yields a weighted root-mean-square (wrms) misfit that always exceeds the wrms of the measured signal (26.3 mm/yr). The best-fitting models are those that yield negligible deformation, indicating the model parameters have no real physical meaning. GPS velocities are well fit (wrms 4.0 mm/yr) by combining a viscoelastic flow model that best fits the horizontal velocities with similar to 50 cm/yr thrust slip down-dip of the coseismic rupture. Both deep slip and flow respond to stress changes, and each can significantly change stress in the realm of the other; it therefore is reasonable to expect that both transient deep slip and viscoelastic flow will influence surface deformation long after a great earthquake.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

HgCdTe mid wave infrared (MWIR) n(+)/nu/p(+) homo-junction photodiodes with planar architecture are designed, fabricated, and measured at room temperature. An improved analytical I-V model is reported by incorporating trap assisted tunneling and electric field enhanced Shockley-Read-Hall generation recombination process due to dislocations. Tunneling currents are fitted before and after the Auger suppression of carriers with energy level of trap (E-t), trap density (N-t), and the doping concentrations of n(+) and nu regions as fitting parameters. Values of E-t and N-t are determined as 0.79 E-g and similar to 9 x 10(14) cm(-3), respectively, in all cases. Doping concentration of nu region was found to exhibit nonequilibrium depletion from a value of 2 x 10(16) to 4 x 10(15) cm(-3) for n(+) doping of 2 x 10(17) cm(-3). Pronounced negative differential resistance is observed in the homo-junction HgCdTe diodes. (C) 2012 American Institute of Physics. [doi:10.1063/1.3682483]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The loop heat pipe (LHP) is a passive two-phase heat transport device that is gaining importance as a part of spacecraft thermal control systems and also in applications such as in avionics cooling and submarines. A major advantage of a loop heat pipe is that the porous wick structure is confuned to the evaporator section, and connection between the evaporator and condenser sections is by smooth tubes, thus minimizing pressure drop. A brief overview of loop heat pipes with respect to basic fundamentals, construction details, operating principles, and typical operating characteristics is presented in this paper. Finally, the paper presents the current developments in modeling of thermohydraulics and design methodologies of LHPs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work is aimed at studying the influence of electrolyte chemistry on the voltage-time (V-T) response characteristics, phase structure, surface morphology, film growth rate and corrosion properties of titania films fabricated by micro arc oxidation (MAO) on Cp Ti. The titania films were developed with a sodium phosphate based reference electrolyte comprising the additives such as sodium carbonate (Na2CO3), sodium nitrite (NaNO2) and urea (CO(NH2)(2)). The phase composition, surface morphology, elemental composition and thickness of the films were assessed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) techniques. The corrosion characteristics of the fabricated films were studied under Kokubo simulated body fluid (SBF) condition by potentiodynamic polarization, long term potential and linear polarization resistance (LPR) measurements and electrochemical impedance spectroscopy (EIS) methods. In addition, the corrosion characteristics of the grown films were analyzed by EIS curve fitting and equivalent circuit modeling. Salt spray test (SST) as per ASTM B 117 standard was also conducted to verify the corrosion resistance of the grown films. The XRD results showed that the titania films were composed of both anatase and rutile phases at different proportions. Besides, the films grown in carbonate and nitrite containing electrolyte systems showed an enhanced growth of their rutile phase in the 1 0 1] direction which could be attributed to the modifications introduced in the growth process by the abundant oxygen available during the process. The SEM-EDX and elemental mapping results showed that the respective electrolyte borne elements were incorporated and distributed uniformly in all the films. Among all the grown films under study, the film developed in carbonate containing electrolyte system exhibited considerably improved corrosion resistance due to suitable modifications in its structural and morphological characteristics. The rate of anatase to rutile phase transformation and the rutile growth direction were strongly influenced by the abundant oxidizing species available during the film growth process. (C) 2012 Elsevier B. V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the results of magnetization and electron paramagnetic resonance (EPR) studies on nanoparticles (average diameter similar to 30 nm) of Bi0.25Ca0.75MnO3 (BCMO) and compare them with the results on bulk BCMO. The nanoparticles were prepared using the nonaqueous sol-gel technique and characterized by XRD and TEM analysis. Magnetization measurements were carried out with a commercial physical property measurement system (PPMS). While the bulk BCMO exhibits a charge ordering transition at similar to 230 K and an antiferromagnetic (AFM) transition at similar to 130 K, in the nanoparticles, the CO phase is seen to have disappeared and a transition to a ferromagnetic (FM) state is observed at T-c similar to 120 K. However, interestingly, the exchange bias effect observed in other nanomanganite ferromagnets is absent in BCMO nanoparticles. EPR measurements were carried out in the X-band between 8 and 300 K. Lineshape fitting to a Lorentzian with two terms (accounting for both the clockwise and anticlockwise rotations of the microwave field) was employed to obtain the relevant EPR parameters as functions of temperature. The results confirm the occurrence of ferromagnetism in the nanoparticles of BCMO. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4730612]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dark currents n(+)/v/p(+) Hg0.69Cd0.Te-31 mid wave infrared photodiodes were measured at room temperature. The diodes exhibited negative differential resistance at room-temperature, but with increasing leakage currents as a function of reverse bias. The current-voltage characteristics were simulated and fitted by incorporating trap assisted tunneling via traps and Shockley-Read-Hall generation recombination process due to dislocations in the carrier transport equations. The thermal suppression of carriers was simulated by taking energy level of trap (E-t), trap density (N-t) and the doping concentrations of n(+) and v regions as fitting parameters. Values of E-t and N-t were 0.78E(g) and similar to 6-9 x 10(14) cm(-3) respectively for most of the diodes. Variable temperature current voltage measurements on variable area diode array (VADA) structures confirmed the fact that variation in zero bias resistance area product (R(0)A) is related to g-r processes originating from variation in concentration and kind of defects that intersect a junction area. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work is concerned with the removal of unwanted fluid through the source-sink pair. The source consists of fluid issuing out of a nozzle in the form of a jet and the sink is a pipe that is kept some distance from the source pipe. Of concern is the percentage of source fluid sucked through the sink. The experiments have been carried in a large glass water tank. The source nozzle diameter is 6Â mm and the sink pipe diameter is either 10 or 20Â mm. The horizontal and vertical separations and angles between these source and sink pipes are adjustable. The flow was visualized using KMnO 4 dye, planer laser induced fluorescence and particle streak photographs. To obtain the effectiveness (that is percentage of source fluid entering the sink pipe), titration method is used. The velocity profiles with and without the sink were obtained using particle image velocimetry. The sink flow rate to obtain a certain effectiveness increase dramatically with lateral separation. The sink diameter and the angle between source and the sink axes don't influence effectiveness as much as the lateral separation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We reconsider standard uniaxial fatigue test data obtained from handbooks. Many S-N curve fits to such data represent the median life and exclude load-dependent variance in life. Presently available approaches for incorporating probabilistic aspects explicitly within the S-N curves have some shortcomings, which we discuss. We propose a new linear S-N fit with a prespecified failure probability, load-dependent variance, and reasonable behavior at extreme loads. We fit our parameters using maximum likelihood, show the reasonableness of the fit using Q-Q plots, and obtain standard error estimates via Monte Carlo simulations. The proposed fitting method may be used for obtaining S-N curves from the same data as already available, with the same mathematical form, but in cases in which the failure probability is smaller, say, 10 % instead of 50 %, and in which the fitted line is not parallel to the 50 % (median) line.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals with the role of the higher-order evanescent modes generated at the area discontinuities in the acoustic attenuation characteristics of an elliptical end-chamber muffler with an end-offset inlet and end-centered outlet. It has been observed that with an increase in length, the muffler undergoes a transition from being acoustically short to acoustically long. Short end chambers and long end chambers are characterized by transverse plane waves and axial plane waves, respectively, in the low-frequency range. The nondimensional frequency limit k(0)(D-1/2) or k(0)R(0) as well as the chamber length to inlet/outlet pipe diameter ratio, i.e., L/d(0), up to which the muffler behaves like a short chamber and the corresponding limit beyond which the muffler is acoustically long are determined. The limits between which neither the transverse plane-wave model nor the conventional axial plane-wave model gives a satisfactory prediction have also been determined, the region being called the intermediate range. The end-correction expression for this muffler configuration in the acoustically long limit has been obtained using 3-D FEA carried on commercial software, covering most of the dimension range used in the design exercise. Development of a method of combining the transverse plane wave model with the axial plane wave model using the impedance Z] matrix is another noteworthy contribution of this work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work is concerned with the removal of unwanted fluid through the source-sink pair. The source consists of fluid issuing out of a nozzle in the form of a jet and the sink is a pipe that is kept some distance from the source pipe. Of concern is the percentage of source fluid sucked through the sink. The experiments have been carried in a large glass water tank. The source nozzle diameter is 6 mm and the sink pipe diameter is either 10 or 20 mm. The horizontal and vertical separations and angles between these source and sink pipes are adjustable. The flow was visualized using KMnO4 dye, planer laser induced fluorescence and particle streak photographs. To obtain the effectiveness (that is percentage of source fluid entering the sink pipe), titration method is used. The velocity profiles with and without the sink were obtained using particle image velocimetry. The sink flow rate to obtain a certain effectiveness increase dramatically with lateral separation. The sink diameter and the angle between source and the sink axes don't influence effectiveness as much as the lateral separation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The compatibility of the fast-tachocline scenario with a flux-transport dynamo model is explored. We employ a flux-transport dynamo model coupled with simple feedback formulae relating the thickness of the tachocline to the amplitude of the magnetic field or to the Maxwell stress. The dynamo model is found to be robust against the nonlinearity introduced by this simplified fast-tachocline mechanism. Solar-like butterfly diagrams are found to persist and, even without any parameter fitting, the overall thickness of the tachocline is well within the range admitted by helioseismic constraints. In the most realistic case of a time-and latitude-dependent tachocline thickness linked to the value of the Maxwell stress, both the thickness and its latitudinal dependence are in excellent agreement with seismic results. In nonparametric models, cycle-related temporal variations in tachocline thickness are somewhat larger than admitted by helioseismic constraints; we find, however, that introducing a further parameter into our feedback formula readily allows further fine tuning of the thickness variations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ground management problems are typically solved by the simulation-optimization approach where complex numerical models are used to simulate the groundwater flow and/or contamination transport. These numerical models take a lot of time to solve the management problems and hence become computationally expensive. In this study, Artificial Neural Network (ANN) and Particle Swarm Optimization (PSO) models were developed and coupled for the management of groundwater of Dore river basin in France. The Analytic Element Method (AEM) based flow model was developed and used to generate the dataset for the training and testing of the ANN model. This developed ANN-PSO model was applied to minimize the pumping cost of the wells, including cost of the pipe line. The discharge and location of the pumping wells were taken as the decision variable and the ANN-PSO model was applied to find out the optimal location of the wells. The results of the ANN-PSO model are found similar to the results obtained by AEM-PSO model. The results show that the ANN model can reduce the computational burden significantly as it is able to analyze different scenarios, and the ANN-PSO model is capable of identifying the optimal location of wells efficiently.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CdTe thin films of 500 thickness prepared by thermal evaporation technique were analyzed for leakage current and conduction mechanisms. Metal-insulator-metal (MIM) capacitors were fabricated using these films as a dielectric. These films have many possible applications, such as passivation for infrared diodes that operate at low temperatures (80 K). Direct-current (DC) current-voltage (I-V) and capacitance-voltage (C-V) measurements were performed on these films. Furthermore, the films were subjected to thermal cycling from 300 K to 80 K and back to 300 K. Typical minimum leakage currents near zero bias at room temperature varied between 0.9 nA and 0.1 mu A, while low-temperature leakage currents were in the range of 9.5 pA to 0.5 nA, corresponding to resistivity values on the order of 10(8) a''broken vertical bar-cm and 10(10) a''broken vertical bar-cm, respectively. Well-known conduction mechanisms from the literature were utilized for fitting of measured I-V data. Our analysis indicates that the conduction mechanism in general is Ohmic for low fields < 5 x 10(4) V cm(-1), while the conduction mechanism for fields > 6 x 10(4) V cm(-1) is modified Poole-Frenkel (MPF) and Fowler-Nordheim (FN) tunneling at room temperature. At 80 K, Schottky-type conduction dominates. A significant observation is that the film did not show any appreciable degradation in leakage current characteristics due to the thermal cycling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Savitzky-Golay (S-G) filters are finite impulse response lowpass filters obtained while smoothing data using a local least-squares (LS) polynomial approximation. Savitzky and Golay proved in their hallmark paper that local LS fitting of polynomials and their evaluation at the mid-point of the approximation interval is equivalent to filtering with a fixed impulse response. The problem that we address here is, ``how to choose a pointwise minimum mean squared error (MMSE) S-G filter length or order for smoothing, while preserving the temporal structure of a time-varying signal.'' We solve the bias-variance tradeoff involved in the MMSE optimization using Stein's unbiased risk estimator (SURE). We observe that the 3-dB cutoff frequency of the SURE-optimal S-G filter is higher where the signal varies fast locally, and vice versa, essentially enabling us to suitably trade off the bias and variance, thereby resulting in near-MMSE performance. At low signal-to-noise ratios (SNRs), it is seen that the adaptive filter length algorithm performance improves by incorporating a regularization term in the SURE objective function. We consider the algorithm performance on real-world electrocardiogram (ECG) signals. The results exhibit considerable SNR improvement. Noise performance analysis shows that the proposed algorithms are comparable, and in some cases, better than some standard denoising techniques available in the literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals with the study of a submerged jet for the suction of unwanted fluid. This submerged jet is caused by the fluid coming out from a source. The presence of a sink in front of this source facilitates the suction of the fluid depending upon the source and sink flow rates, the axial and lateral separations of the source and sink, and the angle between the axes of the source and sink. The main purpose is the determination of the sink flow rate for 100% removal of the source fluid as a function of these parameters. The experiments have been carried using a source nozzle 6 mm in diameter and two sizes for the sink pipe diameter: 10 mm and 20 mm. The main diagnostics used are flow visualization using dye and particle image velocimetry (PIV). The dependence of the required suction flow rate to obtain 100% effectiveness on the suction tube diameter and angle is relatively weak compared to the lateral separation. DOI: 10.1115/1.4007266]