130 resultados para Piezoresponse force microscopy


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Spin noise phenomenon was predicted way back in 1946. However, experimental investigations regarding spin noise became possible only recently with major technological improvements in NMR hardware. These experiments have several potential novel applications and also demand refinements in the existing theoretical framework to explain the phenomenon. Elegance of noise spectroscopy in gathering information about the properties of a system lies in the fact that it does not require external perturbation, and the system remains in thermal equilibrium. Spin noise is intrinsic magnetic fluctuations, and both longitudinal and transverse components have been detected independently in many systems. Detection of fluctuating longitudinal magnetization leads to field of Magnetic Resonance Force Microscopy (MRFM) that can efficiently probe very few spins even down to the level of single spin utilizing ultrasensitive cantilevers. Transverse component of spin noise, which can simultaneously monitor different resonances over a given frequency range enabling one to distinguish between different chemical environments, has also received considerable attention, and found many novel applications. These experiments demand a detailed understanding of the underlying spin noise phenomenon in order to perform perturbation-free magnetic resonance and widen the highly promising application area. Detailed investigations of noise magnetization have been performed recently using force microscopy on equilibrium ensemble of paramagnetic alkali atoms. It was observed that random fluctuations generate spontaneous spin coherences which has similar characteristics as generated by macroscopic magnetization of polarized ensemble in terms of precession and relaxation properties. Several other intrinsic properties like g-factors, isotope-abundance ratios, hyperfine splitting, spin coherence lifetimes etc. also have been achieved without having to excite the sample. In contrast to MRFM-approaches, detection of transverse spin noise also offers novel applications, attracting considerable attention. This has unique advantage as different resonances over a given frequency range enable one to distinguish between different chemical environments. Since these noise signatures scale inversely with sample size, these approaches lead to the possibility of non-perturbative magnetic resonance of small systems down to nano-scale. In this review, these different approaches will be highlighted with main emphasis on transverse spin noise investigations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of gemini surfactants based on cationic imidazolium ring as polar headgroup, abbreviated as lm-n-lm], 2Br(-) (n = 2, 5, 6 and 12), was synthesized. Their ability to stabilize silver nanoparticles in aqueous media was investigated. The resulting suspensions were characterized by UV-Vis spectroscopy and transmission electron microscopy (TEM). They exhibit specific morphologies by adopting different supramolecular assemblies in aqueous media depending on the internal packing arrangements and on the number of spacer methylene units -(CH2)(n)-]. Individual colloids were extracted from the aqueous to chloroform layer and spread at the air/water interface to allow the formation of well-defined Langmuir films. By analysis of the surface pressure-area isotherms, the details about the packing behavior and orientation of the imidazolium gemini surfactant capped silver nanoparticles were obtained. Morphological features of the dynamic process of monolayer compression at the air-water interface were elucidated using Brewster angle microscopy (BAM). These monolayers were further transferred on mica sheets by the Langmuir-Blodgett technique at their associated collapse pressure and the morphology of these monolayers was investigated by atomic force microscopy (AFM). The number of spacer methylene units -(CH2)(n)-] of the gemini surfactants exerted critical influence in modulating the characteristics of the resulting Langmuir films. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An accurate and highly sensitive sensor platform has been demonstrated for the detection of C-reactive protein (CRP) using optical fiber Bragg gratings (FBGs). The CRP detection has been carried out by monitoring the shift in Bragg wavelength (Delta lambda(B)) of an etched FBG (eFBG) coated with an anti-CRP antibody (aCRP)-graphene oxide (GO) complex. The complex is characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy. A limit of detection of 0.01 mg/L has been achieved with a linear range of detection from 0.01 mg/L to 100 mg/L which includes clinical range of CRP. The eFBG sensor coated with only aCRP (without GO) show much less sensitivity than that of aCRP-GO complex coated eFBG. The eFBG sensors show high specificity to CRP even in the presence of other interfering factors such as urea, creatinine and glucose. The affinity constant of similar to 1.1 x 10(10) M-1 has been extracted from the data of normalized shift (Delta lambda(B)/lambda(B)) as a function of CRP concentration. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this work was to prepare hybrid nanoparticles of graphene sheets decorated with strontium metallic nanoparticles and demonstrate their advantages in bone tissue engineering. Strontium-decorated reduced graphene oxide (RGO_Sr) hybrid nanoparticles were synthesized by the facile reduction of graphene oxide and strontium nitrate. X-ray diffraction, transmission electron microscopy, and atomic force microscopy revealed that the hybrid particles were composed of RGO sheets decorated with 200-300 nm metallic strontium particles. Thermal gravimetric analysis further confirmed the composition of the hybrid particles as 22 wt% of strontium. Macroporous tissue scaffolds were prepared by incorporating RGO_Sr particles in poly(epsilon-caprolactone) (PCL). The PCL/RGO_Sr scaffolds were found to elute strontium ions in aqueous medium. Osteoblast proliferation and differentiation was significantly higher in the PCL scaffolds containing the RGO_Sr particles in contrast to neat PCL and PCL/RGO scaffolds. The increased biological activity can be attributed to the release of strontium ions from the hybrid nanoparticles. This study demonstrates that composites prepared using hybrid nanoparticles that elute strontium ions can be used to prepare multifunctional scaffolds with good mechanical and osteoinductive properties. These findings have important implications for designing the next generation of biomaterials for use in tissue regeneration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of gemini surfactants based on cationic imidazolium ring as polar headgroup, abbreviated as Im-n-Im], 2Br(-) (n = 2, 5,6 and 12), was synthesized. Their ability to stabilize silver nanoparticles in aqueous media was investigated. The resulting suspensions were characterized by UV-Vis spectroscopy and transmission electron microscopy (TEM). They exhibit specific morphologies by adopting different supramolecular assemblies in aqueous media depending on the internal packing arrangements and on the number of spacer methylene units -(CH2)(n)-]. Individual colloids were extracted from the aqueous to chloroform layer and spread at the air/water interface to allow the formation of well-defined Langmuir films. By analysis of the surface pressure-area isotherms, the details about the packing behavior and orientation of the imidazolium gemini surfactant capped silver nanoparticles were obtained. Morphological features of the dynamic process of monolayer compression at the air-water interface were elucidated using Brewster angle microscopy (BAM). These monolayers were further transferred on mica sheets by the Langmuir-Blodgett technique at their associated collapse pressure and the morphology of these monolayers was investigated by atomic force microscopy (AFM). The number of spacer methylene units (CH2)(n)-] of the gemini surfactants exerted critical influence in modulating the characteristics of the resulting Langmuir films. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The performance of molecular materials in optoelectronic devices critically depends upon their electronic properties and solid-state structure. In this report, we have synthesized sulfur and selenium based (T4BT and T4BSe) donor-acceptor-donor (D-A-D) organic derivatives in order to understand the structure-property correlation in organic semiconductors by selectively tuning the chalcogen atom. The photophysical properties exhibit a significant alteration upon varying a single atom in the molecular structure. A joint theoretical and experimental investigation suggests that replacing sulfur with selenium significantly reduces the band gap and molar absorption coefficient because of lower electronegativity and ionization potential of selenium. Single-crystal X-ray diffraction analysis showed differences in their solid-state packing and intermolecular interactions. Subsequently, difference in the solid-state packing results variation in self-assembly. Micorstructural changes within these materials are correlated to their electrical resistance variation, investigated by conducting probe atomic force microscopy (CP-AFM) measurements. These results provide useful guidelines to understand the fundamental properties of D-A-D materials prepared by atomistic modulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nonviral gene delivery offers cationic liposomes as promising instruments for the delivery of double-stranded RNA (ds RNA) molecules for successful sequence-specific gene silencing (RNA interference). The efficient delivery of siRNA (small interfering RNA) to cells while avoiding unexpected side effects is an important prerequisite for the exploitation of the power of this excellent tool. We present here six new tocopherol based cationic gemini lipids, which induce substantial gene knockdown without any obvious cytotoxicity. All the efficient coliposomal formulations derived from each of these geminis and a helper lipid, dioleoylphosphatidylethanolamine (DOPE), were well characterized using physical methods such as atomic force microscopy (AFM) and dynamic light scattering (DLS). Zeta potential measurements were conducted to estimate the surface charge of these formulations. Flow cytometric analysis showed that the optimized coliposomal formulations could transfect anti-GFP siRNA efficiently in three different GFP expressing cell lines, viz., HEK 293T, HeLa, and Caco-2, significantly better than a potent commercial standard Lipofectamine 2000 (L2K) both in the absence and in the presence of serum (FBS). Notably, the knockdown activity of coliposomes of gemini lipids was not affected even in the presence of serum (10% and 50% FBS) while it dropped down for L2K significantly. Observations under a fluorescence microscope, RT-PCR, and Western blot analysis substantiated the flow cytometry results. The efficient cellular entry of labeled siRNA in GFP expressing cells as evidenced from confocal microscopy put forward these gemini lipids among the potent lipidic carriers for siRNA. The efficient transfection capabilities were also profiled in a more relevant fashion while performing siRNA transfections against survivin (an anti-apoptotic protein) which induced substantial apoptosis. Furthermore, the survivin downregulation improved the therapeutic efficacy levels of an anticancer drug, doxorubicin, significantly. In short, the new tocopherol based gemini lipids appear to be highly promising for achieving siRNA mediated gene knockdown in various cell lines.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new series of lipophilic cholesteryl derivatives of 2,4,6-trichloro-pyrimidine-5-carbaldehyde has been synthesized. Oxyethylene spacers of variable lengths were inserted between the hydrogen bonding promoting pyrimidine core and the cholesteryl tail in order to understand their effect on the selfassembly of these compounds. Only compound 1a with the shortest spacer formed a gel in organic solvents such as n-butanol and n-dodecane. While other members (1b and c) having longer spacers led to sol formation and precipitation in n-butanol and n-dodecane respectively. The self-assembly phenomena associated with the gelation process were investigated using temperature-dependent UVVis and CD-spectroscopy. The morphological features of the freeze-dried gels obtained from different organic solvents were examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The solid phase behaviours of these molecules and their associated alkali metal ion complexes were explored using polarized optical microscopy (POM) and differential scanning calorimetry (DSC). The molecular arrangements in the xerogel and in the solid state were further probed using a wide-angle Xray diffraction (WAXD) technique. Analysis of the wide-angle X-ray diffraction data reveals that this class of molecules adopts a hexagonal columnar organization in the gel and in the solid state. Each slice of these hexagonal columnar structures is composed of a dimeric molecular-assembly as a building block. Significant changes in the conformation of the oxyethylene chains could be triggered via the coordination of selected alkali metal ions. This led to the production of interesting metal ion promoted mesogenic behaviour.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ni-W alloy coatings are electrodeposited with direct and pulse current using gluconate bath at pH5. Effects of direct current (DC) and pulse current (PC) on structural characteristics of the coatings have been investigated by energy dispersive X-ray spectroscopy (EDXS), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy (XPS). EDXS shows that W contents are 13.3 and 12.6 at.% in DC and PC (10:40) Ni-W coatings, respectively. FESEM analysis exhibits the homogeneous coarse nodular morphology in DC plated deposits. DSC studies reveal that Ni-W coatings are thermally stable up to 400 degrees C. XPS studies demonstrate that DC plated coating has significant amount of Ni and W in elemental form along with their respective oxidized species. In contrast, mainly oxidized metals are present in the as-deposited coatings prepared with PC plating. The microhardness of pulse current (100:400) deposited Ni-W coating is about 750HK that is much higher than DC plated coating (635 HK). Heat treatment of the deposits carried out at different temperatures show a significant increase in microhardness which can be comparable with hard chromium coatings.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An as-cast Al-7 % Si alloy was processed by high-pressure torsion (HPT) for up to 10 turns at temperatures of 298 or 445 K. The HPT-processed samples had ultrafine-grained structures and they were tested in tension at room temperature at various strain rates in the range from 1.0 x 10(-4) to 1.0 x 10(-2) s(-1). The contributions of grain boundary sliding (GBS) to the total strain were measured directly using atomic force microscopy. Samples simultaneously showing both high strength and high ductility contained the highest fractions of high-angle grain boundaries (HAGB) and exhibited the highest contributions from GBS, whereas samples showing high strength but low ductility gave negligible values for the sliding contributions. It is concluded that high strength and high ductility require both an ultrafine grain size and a high fraction of HAGB.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polycrystalline BiFeO3 thin films were grown on La0.5Sr0.5CoO3 buffered Pt (200)/TiO2/SiO2/Si substrates under different oxygen partial pressures (10, 25, 50 and 100 mTorr) by puked laser ablation. Piezo-response Force Microscopy and Piezo-Force Spectroscopy have shown that all the films are ferroelectric in nature with locally switchable domains. It has also revealed a preferential downward domain orientation in as-grown films grown under lower oxygen partial pressure (10 and 25 mTorr) with a reversal of preferential domain orientation as the oxygen partial pressure is increased to 100 mTorr during laser ablation. Such phenomena are atypical of multi-grained polycrystalline ferroelectric films and have been discussed On the basis of detect formation with changing growth conditions. For the 50 mTorr grown film, asymmetric domain stability and retention during write-read studies has been observed which is attributed to grain-size-related defect concentration, affecting pinning centres that inhibit domain wall motion. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Herein, we present the design and synthesis of new redox-active monomeric and dimeric (gemini) cationic lipids based on ferrocenylated cholesterol derivatives for gene delivery. The cationic cholesterols are shown to be transfection efficient after being formulated with the neutral helper lipid DOPE in the presence of serum (FBS). The redox activity of the resulting co-liposomes and their lipoplexes could be regulated using the alkanyl ferrocene moiety attached to the ammonium head groups of the cationic cholesterols. Atomic force microscopy (AFM), dynamic light scattering (DLS) and zeta potential measurements were performed to characterize the co-liposomal aggregates and their complexes with pDNA. The transfection efficiency of lipoplexes could be tuned by changing the oxidation state of the ferrocene moiety. The gene transfection capability was assayed in terms of green fluorescence protein (GFP) expression using pEGFP-C3 plasmid DNA in three cell lines of different origins, namely Caco-2, HEK293T and HeLa, in the presence of serum. The vesicles possessing ferrocene in the reduced state induced an efficient transfection, even better than a commercial reagent Lipofectamine 2000 (Lipo 2000) as evidenced by flow cytometry and fluorescence microscopy. All the co-liposomes containing the oxidized ferrocene displayed diminished levels of gene expression. Gene transfection events from the oxidized co-liposomes were further potentiated by introducing ascorbic acid (AA) as a reducing agent during lipoplex incubation with cells, leading to the resumption of transfection activity. Assessment of transfection capability of both reduced and oxidized co-liposomes was also undertaken following cellular internalization of labelled pDNA using confocal microscopy and flow cytometry. Overall, we demonstrate here controlled gene transfection activities using redox-driven, transfection efficient cationic monomeric and dimeric cholesterol lipids. Such systems could be used in gene delivery applications where transfection needs to be performed spatially or temporally.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The demixing behavior, transient morphologies and mechanism of phase separation in PS/PVME blends were greatly altered in the presence of a very low concentration of rod-like particles (multiwall carbon nanotubes, MWNTs). This phenomenon is due to the specific interaction of one of the phases (PVME) with the anisotropic MWNTs, which creates a heterogeneous environment in the blend. This specific interaction alters the chain dynamics in the interfacial region as against the bulk. A comprehensive analysis using isochronal temperature sweep was performed to understand the demixing temperature in the blends. The evolution of phase morphology as a function of time and temperature was assessed by polarizing optical microscopy (POM), atomic force microscopy (AFM) and scanning electron microscopy (SEM). The addition of MWNTs increased the rheological demixing temperature and the spinodal temperature in almost all the compositions. The intriguing transient morphologies were mapped, which varied from nucleation and growth to coalescence-induced viscoelastic phase separation (C-VPS) in PVME-rich blends, to spinodal decomposition in the near-critical compositions, to transient gel-induced VPS (T-VPS) in the PS-rich compositions. Mapping of the morphology development displayed two types of fracture mechanisms: ductile fracture for near-critical compositions and brittle fracture for off-critical composition. The change in the phase separation mechanism in the presence of MWNTs was due to the variation in dynamic asymmetry brought about by these anisotropic particles. All these observations were correlated by POM, SEM and AFM studies. The length of the cooperatively rearranging region (CRR), as evaluated using modulated differential scanning calorimetry (MDSC) measurements, was found to be composition-independent. The observed variation of effective glass transition of PVME (low T-g component) on blending with PS (high Tg component) and by the addition of MWNTs accounts for the dynamic heterogeneity introduced by MWNTs in the system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Titanium dioxide thin films were deposited by RF reactive magnetron sputtering technique on p-type silicon(100) substrates held at temperatures in the range 303-673 K. The influence of substrate temperature on the core level binding energies, chemical bonding configuration, crystallographic structure and dielectric properties was investigated. X-ray photoelectron spectroscopy studies and Fourier transform infrared transmittance data confirmed the formation of stoichiometric films with anatase phase at a substrate temperature of 673 K. The films formed at 303 K were nanocrystalline with amorphous matrix while those deposited at 673 K were transformed in to crystalline phase and growth of grains in pyramidal like structure as confirmed by X-ray diffraction and atomic force microscopy respectively. Metal-oxide-semiconductor capacitors were fabricated with the configuration of Al/TiO2/Si structures. The current voltage, capacitance voltage and conductance voltage characteristics were studied to understand the electrical conduction and dielectric properties of the MOS devices. The leakage current density (at gate voltage of 2 V) decreased from 2.2 x 10(-6) to 1.7 x 10(-7) A/cm(2), the interface trap density decreased from 1.2 x 10(13) to 2.1 x 10(12) cm(-2) eV(-1) and the dielectric constant increased from 14 to 36 with increase of substrate temperature from 303 to 673 K.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Disease conditions like malaria, sickle cell anemia, diabetes mellitus, cancer, etc., are known to significantly alter the deformability of certain types of cells (red blood cells, white blood cells, circulating tumor cells, etc.). To determine the cellular deformability, techniques like micropipette aspiration, atomic force microscopy, optical tweezers, quantitative phase imaging have been developed. Many of these techniques have an advantage of determining the single cell deformability with ultrahigh precision. However, the suitability of these techniques for the realization of a deformability based diagnostic tool is questionable as they are expensive and extremely slow to operate on a huge population of cells. In this paper, we propose a technique for high-throughput (800 cells/s) determination of cellular deformability on a single cell basis. This technique involves capturing the image(s) of cells in flow that have undergone deformation under the influence of shear gradient generated by the fluid flowing through the microfluidic channels. Deformability indices of these cells can be computed by performing morphological operations on these images. We demonstrate the applicability of this technique for examining the deformability index on healthy, diabetic, and sphered red blood cells. We believe that this technique has a strong role to play in the realization of a potential tool that uses deformability as one of the important criteria in disease diagnosis.