109 resultados para Pelczynski`s decomposition method
Resumo:
Thermal decomposition of Ca(OH)2 with and without additives has been experimentally investigated for its application as a thermochemical energy storage system. The homogeneous reaction model gives a satisfactory fit for the kinetic data on pure and Ni(OH)2---, Zn(OH)2--- and Al(OH)3---doped Ca(OH)2 and the order of reaction is 0.76 in all cases except for the Al(OH)3-doped sample for which the decomposition is zero order. These additives are shown not only to enhance the reaction rate but also to reduce the decomposition temperature significantly. Some models for solid decomposition reactions, and possible mechanisms in the decomposition of solids containing additives, are also discussed.
Resumo:
A method has been developed to isolate protoplasts from dermatophytes using Novozym 234. A simple technique of flotation in MgSO, has been adapted to separate protoplasts from incubation mixture. Electron microscopic studies confirmed the absence of cell wall material on these protoplasts. The recovery of DNA from protoplasts was higher than from mycelia.
Resumo:
The “partition method” or “sub-domain method” consists of expressing the solution of a governing differential equation, partial or ordinary, in terms of functions which satisfy the boundary conditions and setting to zero the error in the differential equation integrated over each of the sub-domains into which the given domain is partitioned. In this paper, the use of this method in eigenvalue problems with particular reference to vibration of plates is investigated. The deflection of the plate is expressed in terms of polynomials satisfying the boundary conditions completely. Setting the integrated error in each of the subdomains to zero results in a set of simultaneous, linear, homogeneous, algebraic equations in the undetermined coefficients of the deflection series. The algebraic eigenvalue problem is then solved for eigenvalues and eigenvectors. Convergence is examined in a few typical cases and is found to be satisfactory. The results obtained are compared with existing results based on other methods and are found to be in very good agreement.
Resumo:
A study of the thermal decomposition and ignition of coal as functions of pelletizing pressure and dwell time has revealed that: (1) ignition and thermal behaviour are related to the apparent density of the pelletized coal; (2) for a given apparent density of pelletized coal, the ignition temperature is related to the rate constants of thermal decomposition. Isothermal decomposition in air at 550 °C has been shown to fit the Avrami-Erofeev equation for three-dimensional growth of nuclei.