453 resultados para PM2. 5
Resumo:
Die kristalline Struktur von Aza-twistanon wurde durch eine Röntgenstruktur-analyse untersucht. Die Kristalle gehören zur monoklinen Raumgruppe P21/n mit den Zelldimensionen a = 6,662(6), b = 13,36(2), c = 8,606(9) Å, = 98,97(2)°, V = 757 Å3, Z = 4. Die Struktur wurde mit Direktmethoden gelöst und bis zu R = 0,035 verfeinert (mittlere (c) = 0,003 Å3).Die cis-Amidgruppe ist relativ stark deformiert und hat einen Torsionswinkel C -C -N-C von 14,5(4)° (Deformation aus der Ebene c = 5,0(5)° und N = 13,5(4,0)°). Die gegenüberliegende äthylenbrücke weist einen Torsionswinkel von 25,1(5)° auf. Die entsprechenden Winkel in Twistan betragen je 20°. Das tricyclische Gerüst von Aza-twistanon hat approximative.
Resumo:
4-Methyl-5-beta-hydroxyethylthiazole kinase (ThiK) catalyses the phosphorylation of the hydroxyl group of 4-methyl-5-beta-hydroxyethylthiazole. This work reports the first crystal structure of an archaeal ThiK: that from Pyrococcus horikoshii OT3 (PhThiK) at 1.85 angstrom resolution with a phosphate ion occupying the position of the beta-phosphate of the nucleotide. The topology of this enzyme shows the typical ribokinase fold of an alpha/beta protein. The overall structure of PhThiK is similar to those of Bacillus subtilis ThiK (BsThiK) and Enterococcus faecalis V583 ThiK (EfThiK). Sequence analysis of ThiK enzymes from various sources indicated that three-quarters of the residues involved in interfacial regions are conserved. It also revealed that the amino-acid residues in the nucleotide-binding, magnesium ion-binding and substrate-binding sites are conserved. Binding of the nucleotide and substrate to the ThiK enzyme do not influence the quaternary association (trimer) as revealed by the crystal structure of PhThiK.
Resumo:
5-Fluoro-2'-deoxyuricine is incorporated into DNA of mouse breast tumour Image . The incorporation is inhibited by thymidine. Part of the fluorodeoxyuridine is cleaved to fluorouracil and is incorporated into RNA. This incorporation is enhanced by thymidine. The result suggests that the major mechanism of action of the fluorouracil is due to its incorporation into RNA. FUra, 5-Fluorouracil; FdUR, 5-Fluoro-2'-deoxyuridine; FdUMP, 5-Fluoro-2'-deoxyuridine-5'-monophosphate.
Resumo:
A novel racemization observed in the Vitamin B6-amino acid Schiff base complexes, aquo (5'-phosphopyridoxylidene-l-tyrosinato) copper(II) and aquo (5'-phosphopyridoxylidene-l-phenylalaninato) copper(II) is described. The racemization taking place in solution under mild acidic conditions (pH 5-6) was confirmed by CD studies and the products were characterized by single crystal X-ray diffraction. The structures of both complexes show almost parallel orientation of the aromatic side chain and the pyridoxal II-system. The activation of the αCsingle bondH group due to the intermolecular II- interaction is probably the reason for the unusual racemization observed.
Resumo:
5-Fluorouracil (5FU), an analogue of uracil, was found to inhibit the production of infectious particles of rinderpest virus (RPV) in Vero cells (African green monkey kidney cells) by 99%, at a concentration of 1 μg/ml. The levels of individual mRNA specific for five of the virus genes were also reduced drastically, while the level of mRNA for a cellular housekeeping gene—glyceraldehyde-3-phosphate dehydrogenase (GAPDH)—was unaltered by fluorouracil treatment of infected cells. Both virus RNA and protein synthesis showed inhibition in a dose-dependent manner. The virions which budded out of 5-fluorouracil-treated cells also contained reduced amounts of virus proteins compared with virus particles from untreated cells.
Resumo:
In the title compound, C14H16N2O4 center dot H2O, the dihedral angles between the planes of the 4-hydroxyphenyl and ester groups with the plane of the six-membered tetrahydropyrimidine ring are 87.3 (1) and 75.9 (1)degrees, respectively. The crystal structure is stabilized by O-H center dot center dot center dot O and N-H center dot center dot center dot O hydrogen bonding between the water molecule and the organic functionalities.
Resumo:
In the title compound, C14H15ClN2O2S, the tetrahydropyrimidine ring adopts a twisted boat conformation with the carbonyl group in an s-trans conformation with respect to the C C double bond of the six-membered tetrahydropyrimidine ring. The molecular conformation is determined by an intramolecular C-H center dot center dot center dot pi interaction. The crystal structure is further stabilized by intermolecular N-H center dot center dot center dot O molecular chains and centrosymmetric N-H center dot center dot center dot S dimers.
Resumo:
A novel compound obtained by the oxidation of the title compound with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone has been assigned structure (5) on the basis of spectral data and X-ray crystal structure analysis.
Resumo:
Disodium deoxyuridine 5'-nhosDhate pentahvdrate, Na2(C9H l INEOsP). 5 H20, Call 11N208 P2-. 2Na +. 5 H20, crystallizes in the monoclinic space group P2: with a = 7.250 (4), b = 35.45 (2), c = 7.132 (4)/~, fl = 102.2 (4) °, Z = 4. The Cu Ka intensity data were collected photographically and estimated visually. The structure was obtained by the minimum-function method and difference syntheses and refined to an R of 0.089. In both molecules the uracil base has an anti conformation (2cN = 57.1 and 59.9 °) with respect to the sugar. The deoxyribose moiety of molecule B shows a typical C(l')-exo puckering, with C(I') displaced by 0.52 /k from the best plane. The furanose ring conformation of molecule A can be described as C(2')-endo,C(l')-exo. Both the molecules have an unusual trans-gauche conformation about the exocyclic C(4')-C(5') bond with (~0oo = 171.1, 172.2°; ~0oc = -64.7, -65.9°).
Resumo:
The crystal structure of 5'-amino-5'-deoxyadenosine (5'-Am.dA) p-toluenesulfonate has been determined by X-ray crystallographic methods. It belongs to the orthorhombic space group P2(1)2(1)2(1) with a = 7.754(3)Angstrom, b = 8.065(1)Angstrom and c = 32.481(2)Angstrom. This nucleoside side shows a syn conformation about the glycosyl bond and C2'-endo-C3'-exo puckering for the ribose sugar. The orientation of N5' atom is gauche-trans about the exocyclic C4'-C5' bond. The amino nitrogen N5' forms a trifurcated hydrogen bond with N3, O9T and O4' atoms. Adenine bases form A.A.A triplets through hydrogen bonding between N6, N7 and N1 atoms of symmetry related nucleoside molecules.
Resumo:
In the molecular structure of the title compound, C21H25NO4, the dihydropyridine ring adopts a flattened boat conformation while the cyclohexenone ring is in an envelope conformation. In the crystal structure, molecules are linked into a two-dimensional network parallel to (10 (1) over bar) by N-H center dot center dot center dot O and O-H center dot center dot center dot O hydrogen bonds. The network is generated by R-4(4)(30) and R-4(4)(34) graph-set motifs.
Resumo:
In the title compound, C18H21NO3, the 1,4-dihydropyridine ring exhibits a flattened boat conformation. The methoxyphenyl ring is nearly planar [r.m.s. deviation = 0.0723 (1) angstrom] and is perpendicular to the base of the boat [dihedral angle = 88.98 (4)degrees]. Intermolecular N-H center dot center dot center dot O and C-H center dot center dot center dot O hydrogen bonds exist in the crystal structure.
Resumo:
A wealth of information available from x-ray crystallographic structures of enzyme-ligand complexes makes it possible to study interactions at the molecular level. However, further investigation is needed when i) the binding of the natural substrate must be characterized, because ligands in the stable enzyme-ligand complexes are generally inhibitors or the analogs of substrate and transition state, and when ii) ligand binding is in part poorly characterized. We have investigated these aspects i? the binding of substrate uridyl 3',5'-adenosine (UpA) to ribonuclease A (RNase A). Based on the systematically docked RNase A-UpA complex resulting from our previous study, we have undertaken a molecular dynamics simulation of the complex with solvent molecules. The molecular dynamics trajectories of this complex are analyzed to provide structural explanations for varied experimental observations on the ligand binding at the B2 subsite of ribonuclease A. The present study suggests that B2 subsite stabilization can be effected by different active site groups, depending on the substrate conformation. Thus when adenosine ribose pucker is O4'-endo, Gln69 and Glu111 form hydrogen-bonding contacts with adenine base, and when it is C2'-endo, Asn71 is the only amino acid residue in direct contact with this base. The latter observation is in support of previous mutagenesis and kinetics studies. Possible roles for the solvent molecules in the binding subsites are described. Furthermore, the substrate conformation is also examined along the simulation pathway to see if any conformer has the properties of a transition state. This study has also helped us to recognize that small but concerted changes in the conformation of the substrate can result in substrate geometry favorable for 2',3' cyclization. The identified geometry is suitable for intraligand proton transfer between 2'-hydroxyl and phosphate oxygen atom. The possibility of intraligand proton transfer as suggested previously and the mode of transfer before the formation of cyclic intermediate during transphosphorylation are discussed.