130 resultados para PARABOLIC EQUATIONS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new structured discretization of 2D space, named X-discretization, is proposed to solve bivariate population balance equations using the framework of minimal internal consistency of discretization of Chakraborty and Kumar [2007, A new framework for solution of multidimensional population balance equations. Chem. Eng. Sci. 62, 4112-4125] for breakup and aggregation of particles. The 2D space of particle constituents (internal attributes) is discretized into bins by using arbitrarily spaced constant composition radial lines and constant mass lines of slope -1. The quadrilaterals are triangulated by using straight lines pointing towards the mean composition line. The monotonicity of the new discretization makes is quite easy to implement, like a rectangular grid but with significantly reduced numerical dispersion. We use the new discretization of space to automate the expansion and contraction of the computational domain for the aggregation process, corresponding to the formation of larger particles and the disappearance of smaller particles by adding and removing the constant mass lines at the boundaries. The results show that the predictions of particle size distribution on fixed X-grid are in better agreement with the analytical solution than those obtained with the earlier techniques. The simulations carried out with expansion and/or contraction of the computational domain as population evolves show that the proposed strategy of evolving the computational domain with the aggregation process brings down the computational effort quite substantially; larger the extent of evolution, greater is the reduction in computational effort. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents the buckling analysis of orthotropic nanoplates such as graphene using the two-variable refined plate theory and nonlocal small-scale effects. The two-variable refined plate theory takes account of transverse shear effects and parabolic distribution of the transverse shear strains through the thickness of the plate, hence it is unnecessary to use shear correction factors. Nonlocal governing equations of motion for the monolayer graphene are derived from the principle of virtual displacements. The closed-form solution for buckling load of a simply supported rectangular orthotropic nanoplate subjected to in-plane loading has been obtained by using the Navier's method. Numerical results obtained by the present theory are compared with first-order shear deformation theory for various shear correction factors. It has been proven that the nondimensional buckling load of the orthotropic nanoplate is always smaller than that of the isotropic nanoplate. It is also shown that small-scale effects contribute significantly to the mechanical behavior of orthotropic graphene sheets and cannot be neglected. Further, buckling load decreases with the increase of the nonlocal scale parameter value. The effects of the mode number, compression ratio and aspect ratio on the buckling load of the orthotropic nanoplate are also captured and discussed in detail. The results presented in this work may provide useful guidance for design and development of orthotropic graphene based nanodevices that make use of the buckling properties of orthotropic nanoplates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we have developed methods to compute maps from differential equations. We take two examples. First is the case of the harmonic oscillator and the second is the case of Duffing's equation. First we convert these equations to a canonical form. This is slightly nontrivial for the Duffing's equation. Then we show a method to extend these differential equations. In the second case, symbolic algebra needs to be used. Once the extensions are accomplished, various maps are generated. The Poincare sections are seen as a special case of such generated maps. Other applications are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For a contraction P and a bounded commutant S of P. we seek a solution X of the operator equation S - S*P = (1 - P* P)(1/2) X (1 - P* P)(1/2) where X is a bounded operator on (Ran) over bar (1 - P* P)(1/2) with numerical radius of X being not greater than 1. A pair of bounded operators (S, P) which has the domain Gamma = {(z(1) + z(2), z(2)): vertical bar z(1)vertical bar < 1, vertical bar z(2)vertical bar <= 1} subset of C-2 as a spectral set, is called a P-contraction in the literature. We show the existence and uniqueness of solution to the operator equation above for a Gamma-contraction (S, P). This allows us to construct an explicit Gamma-isometric dilation of a Gamma-contraction (S, P). We prove the other way too, i.e., for a commuting pair (S, P) with parallel to P parallel to <= 1 and the spectral radius of S being not greater than 2, the existence of a solution to the above equation implies that (S, P) is a Gamma-contraction. We show that for a pure F-contraction (S, P), there is a bounded operator C with numerical radius not greater than 1, such that S = C + C* P. Any Gamma-isometry can be written in this form where P now is an isometry commuting with C and C. Any Gamma-unitary is of this form as well with P and C being commuting unitaries. Examples of Gamma-contractions on reproducing kernel Hilbert spaces and their Gamma-isometric dilations are discussed. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solution of a bivariate population balance equation (PBE) for aggregation of particles necessitates a large 2-d domain to be covered. A correspondingly large number of discretized equations for particle populations on pivots (representative sizes for bins) are solved, although at the end only a relatively small number of pivots are found to participate in the evolution process. In the present work, we initiate solution of the governing PBE on a small set of pivots that can represent the initial size distribution. New pivots are added to expand the computational domain in directions in which the evolving size distribution advances. A self-sufficient set of rules is developed to automate the addition of pivots, taken from an underlying X-grid formed by intersection of the lines of constant composition and constant particle mass. In order to test the robustness of the rule-set, simulations carried out with pivotwise expansion of X-grid are compared with those obtained using sufficiently large fixed X-grids for a number of composition independent and composition dependent aggregation kernels and initial conditions. The two techniques lead to identical predictions, with the former requiring only a fraction of the computational effort. The rule-set automatically reduces aggregation of particles of same composition to a 1-d problem. A midway change in the direction of expansion of domain, effected by the addition of particles of different mean composition, is captured correctly by the rule-set. The evolving shape of a computational domain carries with it the signature of the aggregation process, which can be insightful in complex and time dependent aggregation conditions. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a heterogeneous finite element method for the solution of a high-dimensional population balance equation, which depends both the physical and the internal property coordinates. The proposed scheme tackles the two main difficulties in the finite element solution of population balance equation: (i) spatial discretization with the standard finite elements, when the dimension of the equation is more than three, (ii) spurious oscillations in the solution induced by standard Galerkin approximation due to pure advection in the internal property coordinates. The key idea is to split the high-dimensional population balance equation into two low-dimensional equations, and discretize the low-dimensional equations separately. In the proposed splitting scheme, the shape of the physical domain can be arbitrary, and different discretizations can be applied to the low-dimensional equations. In particular, we discretize the physical and internal spaces with the standard Galerkin and Streamline Upwind Petrov Galerkin (SUPG) finite elements, respectively. The stability and error estimates of the Galerkin/SUPG finite element discretization of the population balance equation are derived. It is shown that a slightly more regularity, i.e. the mixed partial derivatives of the solution has to be bounded, is necessary for the optimal order of convergence. Numerical results are presented to support the analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the thermal vibration analysis of orthotropic nanoplates such as graphene, using the two variable refined plate theory and nonlocal continuum mechanics for small scale effects. The nanoplate is modeled based on two variable refined plate theory and the axial stress caused by the thermal effects is also considered. The two variable refined plate theory takes account of transverse shear effects and parabolic distribution of the transverse shear strains through the thickness of the plate, hence it is unnecessary to use shear correction factors. Nonlocal governing equations of motion for the nanoplate are derived from the principle of virtual displacements. The closed form solution for thermal-vibration frequencies of a simply supported rectangular nanoplate has been obtained by using Navier's method of solution. Numerical results obtained by the present theory are compared with available solutions in the literature and the molecular dynamics results. The influences of the small scale coefficient, the room or low temperature, the high temparature, the half wave number and the aspect ratio of nanoplate on the natural frequencies are considered and discussed in detail. It can be concluded that the present theory, which does not require shear correction factor, is not only simple but also comparable to the first-order and higher order shear deformation theory. The present analysis results can be used for the design of the next generation of nanodevices that make use of the thermal vibration properties of the nanoplates. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we consider the problem of computing numerical solutions for stochastic differential equations (SDEs) of Ito form. A fully explicit method, the split-step forward Milstein (SSFM) method, is constructed for solving SDEs. It is proved that the SSFM method is convergent with strong order gamma = 1 in the mean-square sense. The analysis of stability shows that the mean-square stability properties of the method proposed in this paper are an improvement on the mean-square stability properties of the Milstein method and three stage Milstein methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article does not have an abstract.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exponential compact higher-order schemes have been developed for unsteady convection-diffusion equation (CDE). One of the developed scheme is sixth-order accurate which is conditionally stable for the Peclet number 0 <= Pe <= 2.8 and the other is fourth-order accurate which is unconditionally stable. Schemes for two-dimensional (2D) problems are made to use alternate direction implicit (ADI) algorithm. Example problems are solved and the numerical solutions are compared with the analytical solutions for each case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The issue of intermittency in numerical solutions of the 3D Navier-Stokes equations on a periodic box 0, L](3) is addressed through four sets of numerical simulations that calculate a new set of variables defined by D-m(t) = (pi(-1)(0) Omega(m))(alpha m) for 1 <= m <= infinity where alpha(m) = 2m/(4m - 3) and Omega(m)(t)](2m) = L-3 integral(v) vertical bar omega vertical bar(2m) dV with pi(0) = vL(-2). All four simulations unexpectedly show that the D-m are ordered for m = 1,..., 9 such that Dm+1 < D-m. Moreover, the D-m squeeze together such that Dm+1/D-m NE arrow 1 as m increases. The values of D-1 lie far above the values of the rest of the D-m, giving rise to a suggestion that a depletion of nonlinearity is occurring which could be the cause of Navier-Stokes regularity. The first simulation is of very anisotropic decaying turbulence; the second and third are of decaying isotropic turbulence from random initial conditions and forced isotropic turbulence at fixed Grashof number respectively; the fourth is of very-high-Reynolds-number forced, stationary, isotropic turbulence at up to resolutions of 4096(3).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a current hysteresis controller with parabolic boundaries for a 12-sided polygonal voltage space vector inverter fed induction motor (IM) drive is proposed. Parabolic boundaries with generalized vector selection logic, valid for all sectors and rotational direction, is used in the proposed controller. The current error space phasor boundary is obtained by first studying the drive scheme with space vector based PWM (SVPWM) controller. Four parabolas are used to approximate this current error space phasor boundary. The system is then run with space phasor based hysteresis PWM controller by limiting the current error space vector (CESV) within the parabolic boundary. The proposed controller has simple controller implementation, nearly constant switching frequency, extended modulation range and fast dynamic response with smooth transition to the over modulation region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid diffusion couple experiments are conducted to analyse the growth mechanism of the phases and the diffusion mechanism of the components in the Ti-Si system. The calculation of the parabolic growth constants and the integrated diffusion coefficients substantiates that the analysis is intrinsically prone to erroneous conclusions if it is based on just the parabolic growth constants determined for a multiphase interdiffusion zone. The location of the marker plane is detected based on the uniform grain morphology in the TiSi2 phase, which indicates that this phase grows mainly because of Si diffusion. The growth mechanism of the phases and morphological evolution in the interdiffusion zone are explained with the help of imaginary diffusion couples. The activation enthalpies for the integrated diffusion coefficient of TiSi2 and the Si tracer diffusion are calculated as 190 +/- 9 and 197 +/- 8 kJ/mol, respectively. The crystal structure, details on the nearest neighbours of the components, and their relative mobilities indicate that the vacancies are mainly present on the Si sublattice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We generalize the method of A. M. Polyakov, Phys. Rev. E 52, 6183 (1995)] for obtaining structure-function relations in turbulence in the stochastically forced Burgers equation, to develop structure-function hierarchies for turbulence in three models for magnetohydrodynamics (MHD). These are the Burgers analogs of MHD in one dimension Eur. Phys. J.B 9, 725 (1999)], and in three dimensions (3DMHD and 3D Hall MHD). Our study provides a convenient and unified scheme for the development of structure-function hierarchies for turbulence in a variety of coupled hydrodynamical equations. For turbulence in the three sets of MHD equations mentioned above, we obtain exact relations for third-order structure functions and their derivatives; these expressions are the analogs of the von Karman-Howarth relations for fluid turbulence. We compare our work with earlier studies of such relations in 3DMHD and 3D Hall MHD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with the Schrodinger equation i partial derivative(s)u(z, t; s) - Lu(z, t; s) = 0; where L is the sub-Laplacian on the Heisenberg group. Assume that the initial data f satisfies vertical bar f(z, t)vertical bar less than or similar to q(alpha)(z, t), where q(s) is the heat kernel associated to L. If in addition vertical bar u(z, t; s(0))vertical bar less than or similar to q(beta)(z, t), for some s(0) is an element of R \textbackslash {0}, then we prove that u(z, t; s) = 0 for all s is an element of R whenever alpha beta < s(0)(2). This result holds true in the more general context of H-type groups. We also prove an analogous result for the Grushin operator on Rn+1.