178 resultados para NO reduction
Resumo:
Estimates of predicate selectivities by database query optimizers often differ significantly from those actually encountered during query execution, leading to poor plan choices and inflated response times. In this paper, we investigate mitigating this problem by replacing selectivity error-sensitive plan choices with alternative plans that provide robust performance. Our approach is based on the recent observation that even the complex and dense "plan diagrams" associated with industrial-strength optimizers can be efficiently reduced to "anorexic" equivalents featuring only a few plans, without materially impacting query processing quality. Extensive experimentation with a rich set of TPC-H and TPC-DS-based query templates in a variety of database environments indicate that plan diagram reduction typically retains plans that are substantially resistant to selectivity errors on the base relations. However, it can sometimes also be severely counter-productive, with the replacements performing much worse. We address this problem through a generalized mathematical characterization of plan cost behavior over the parameter space, which lends itself to efficient criteria of when it is safe to reduce. Our strategies are fully non-invasive and have been implemented in the Picasso optimizer visualization tool.
Resumo:
The effect of variation in the switching instant of the output switch of the pulser circuit used in energizing an NEMP simulator on the voltage fed to the simulator and hence the electric field within the working volume of the simulator has been studied. Depending upon the instant at which the output switch closes, the amplitude and the wave shape of the voltage that is fed to the illuminator varies. This wave shape of the output voltage from the pulser circuit determines the shape and characteristics of the electric field within the working volume of the simulator. To study the effect of variation in the switching instant on the vertical electric field within the working volume, the vertical electric field has been computed in time and frequency domains. For certain switching instants, the electric field shows a sharp reduction in its amplitude after the peak which is called the notch. The presence of notch results in the test object not getting illuminated with all the frequencies of interest. The notch has been successfully reduced by suitably modifying the pulser circuit.
Resumo:
Microwave-based methods are widely employed to synthesize metal nanoparticles on various substrates. However, the detailed mechanism of formation of such hybrids has not been addressed. In this paper, we describe the thermodynamic and kinetic aspects of reduction of metal salts by ethylene glycol under microwave heating conditions. On the basis of this analysis, we identify the temperatures above which the reduction of the metal salt is thermodynamically favorable and temperatures above which the rates of homogeneous nucleation of the metal and the heterogeneous nucleation of the metal on supports are favored. We delineate different conditions which favor the heterogeneous nucleation of the metal on the supports over homogeneous nucleation in the solvent medium based on the dielectric loss parameters of the solvent and the support and the metal/solvent and metal/support interfacial energies. Contrary to current understanding, we show that metal particles can be selectively formed on the substrate even under situations where the temperature of the substrate Is lower than that of the surrounding medium. The catalytic activity of the Pt/CeO(2) and Pt/TiO(2) hybrids synthesized by this method for H(2) combustion reaction shows that complete conversion is achieved at temperatures as low as 100 degrees C with Pt-CeO(2) catalyst and at 50 degrees C with Pt-TiO(2) catalyst. Our method thus opens up possibilities for rational synthesis of high-activity supported catalysts using a fast microwave-based reduction method.
Resumo:
In this present paper, the effects of non-isothermal rolling temperature and reduction in thickness followed by annealing on microstructure and mechanical properties of ZM21 magnesium alloy were investigated. The alloy rolled at four different temperatures 250 degrees C, 300 degrees C, 350 degrees C and 400 degrees C with reductions of 25%, 50% and 75%. Non-isothermal rolling resulted in grain refinement, introduction of shear bands and twins in the matrix alloy. Partial to full recrystallization was observed when the rolling temperature was above recrystallization temperature. Rolling and subsequent annealing resulted in strain-free equiaxed grains and complete disappearance of shear bands and twins. Maximum ultimate strength (345 MPa) with good ductility (14%) observed in the sample rolled at 250 degrees C with 75% reduction in thickness followed by short annealing. Recrystallization during warm/hot rolling was sluggish, but post-roll treatment gives distinct views about dynamic and static recrystallization. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The physical chemistry of "aluminothermic" reduction of calcium oxide in vacuum is analyzed. Basic thermodynamic data required for the analysis have been generated by a variety of experiments. These include activity measurements in liquid AI-Ca alloys and determination of the Gibbs energies of formation of calcium aluminates. These data have been correlated with phase relations in the Ca-AI-0 system at 1373 K. The various stages of reduction, the end products and the corresponding equilibrium partial pressures of calcium have been established from thermodynamic considerations. In principle, the recovery of calcium can be improved by reducing the pressure in the reactor. However,, the cost of a high vacuum system and the enhanced time for reduction needed to achieve higher yields makes such a practice uneconomic. Aluminum contamination of calcium also increases at low pressures. The best compromise is to carry the reduction up to the stage where 3CaO-Al,O, is formed as the product. This corresponds to an equilibrium calcium partial pressure of 31.3 Pa at 1373 K and 91.6 Pa at 1460 K. Calcium can be extracted at this pressure using mechanical pumps in approximately 8 to 15 hr, depending on the size and the fill ratio of the retort and porosity of the charge briquettes.
Resumo:
This paper describes the authors’ distributed parameter approach for derivation of closed-form expressions for the four-pole parameters of the perforated three-duct muffler components. In this method, three simultaneous second-order partial differential equations are first reduced to a set of six first-order ordinary differential equations. These equations are then uncoupled by means of a modal matrix. The resulting 6 × 6 matrix is reduced to the 2 × 2 transfer matrix using the relevant boundary conditions. This is combined with transfer matrices of other elements (upstream and downstream of this perforated element) to predict muffler performance like noise reduction, which is also measured. The correlation between experimental and theoretical values of noise reduction is shown to be satisfactory.
Resumo:
A large reduction in the leakage current behavior in (Ba, Sr)TiO3 (BST) thin films was observed by graded-layer donor doping. The graded doping was achieved by introducing La-doped BST layers in the grown BST films. The films showed a large decrease (about six orders of magnitude) in the leakage current in comparison to undoped films at an electric field of 100 kV/cm. The large decrease in leakage current was attributed to the formation of highly resistive layers, originating from compensating defect chemistry involved for La-doped films grown in oxidizing environment. Temperature-dependent leakage-current behavior was studied to investigate the conduction mechanism and explanations of the results were sought from Poole–Frenkel conduction mechanism.
Resumo:
The usefulness of dioxomolybdenum reagents in oxo-transfer reactions have been reviewed. The redox ability of dioxomolybdenum reagent has been utilized in designing several synthetic methods, which are useful in organic synthesis. Several reactions such as oxidation of alcohols, sulfides, amines, azides olefins etc are accomplished by using dioxomolybdenum reagents. Similarly, it is also demonstrated that dioxomolybdenum complex is useful in performing reduction of aldehydes, ketones, esters, azides etc. A fine tuning of reaction conditions provides suitable conditions to perform either oxidation or reduction by using catalytic amount of reagents. The oxidation reactions are further simplified by employing the polymer supported molybdenum reagents.
Resumo:
Experiments are carried out in a shock tunnel at a nominal Mach number of 5.75 in order to study the effect of concentrated energy deposition on the drag force experienced by a 120° blunt cone. Electrical energy was deposited along the stagnation streamline of the model using a high voltage DC discharge circuit (1.5 – 3.5KW) and the drag force was measured by a single component accelerometer balance. Numerical simulations were also carried complimenting the experiments. These simulations showed a substantial drag reduction (20% ~ 65%) whereas the experiments show no appreciable reduction in drag