227 resultados para NITROGEN MATRIX
Resumo:
A new linear algebraic approach for identification of a nonminimum phase FIR system of known order using only higher order (>2) cumulants of the output process is proposed. It is first shown that a matrix formed from a set of cumulants of arbitrary order can be expressed as a product of structured matrices. The subspaces of this matrix are then used to obtain the parameters of the FIR system using a set of linear equations. Theoretical analysis and numerical simulation studies are presented to characterize the performance of the proposed methods.
Resumo:
A 6 X 6 transfer matrix is presented to evaluate the response of a multi-layer infinite plate to a given two-dimensional pressure excitation on one of its faces or, alternatively, to evaluate the acoustic pressure distribution excited by the normal velocity components of the radiating surfaces. It is shown that the present transfer matrix is a general case embodying the transfer matrices of normal excitation and one-dimensional pressure excitation due to an oblique incident wave. It is also shown that the present transfer matrix obeys the necessary checks to categorize the physically symmetric multi-layer plate as dynamically symmetric. Expressions are derived to obtain the wave propagation parameters, such as the transmission, absorption and reflection coefficients, in terms of the elements of the transfer matrix presented. Numerical results for transmission loss and reflection coefficients of a two-layer configuration are presented to illustrate the effect of angles of incidence, layer characteristics and ambient media.
Resumo:
Mass spectrometric studies show that contact-arc vaporization of graphite in a partial atmosphere of N2 or NH3 yields nitrogenous products tentatively assigned to species such as C70N2, C59N6, C59N4 and C59N2 involving addition of or substitution by nitrogen along with the species due to C2 and C4 losses. Mass spectrometry and other techniques have been employed to identify products of the nucleophilic addition of aliphatic amines to C60 and C70 in solution phase.
Resumo:
A parallel matrix multiplication algorithm is presented, and studies of its performance and estimation are discussed. The algorithm is implemented on a network of transputers connected in a ring topology. An efficient scheme for partitioning the input matrices is introduced which enables overlapping computation with communication. This makes the algorithm achieve near-ideal speed-up for reasonably large matrices. Analytical expressions for the execution time of the algorithm have been derived by analysing its computation and communication characteristics. These expressions are validated by comparing the theoretical results of the performance with the experimental values obtained on a four-transputer network for both square and irregular matrices. The analytical model is also used to estimate the performance of the algorithm for a varying number of transputers and varying problem sizes. Although the algorithm is implemented on transputers, the methodology and the partitioning scheme presented in this paper are quite general and can be implemented on other processors which have the capability of overlapping computation with communication. The equations for performance prediction can also be extended to other multiprocessor systems.
Resumo:
Strain controlled low cycle fatigue tests on solution annealed nitrogen modified 316L stainless steel have been conducted in air at 823 K to ascertain the influence of strain rate and strain amplitude. Effect of strain rate was examined from 3x10(-5) s(-1) to 3 x 10(-2) at a fixed strain amplitude of +/- 0.6%. The influence of strain amplitude was evaluated between +/- 0.25 % and +/- 1.0% at a constant strain rate of 3x10(-3) s(-1). The cyclic stress response at all testing conditions is characterized by an initial hardening followed by saturation. Serrated flow, a characteristic feature of dynamic strain ageing (DSA) was seen at strain rates lower than 3x10(-3) s(-1). Fatigue life was found to decrease with decrease in strain rate. The reduction in fatigue resistance is attributed mainly to the detrimental effects associated with DSA.
Resumo:
Using the density-matrix renormalization-group technique, we study the ground-state phase diagram and other low-energy properties of an isotropic antiferromagnetic spin-1/2 chain with both dimerization and frustration, i.e., an alternation delta of the nearest-neighbor exchanges and a next-nearest-neighbor exchange J(2). For delta = 0, the system is gapless for J(2) < J(2c) and has a gap for J(2) > J(2c) where J(2c) is about 0.241. For J(2) = J(2c) the gap above the ground state grows as delta to the power 0.667 +/- 0.001. In the J(2)-delta plane, there is a disorder line 2J(2) + delta = 1. To the left of this line, the peak in the static structure factor S(q) is at q(max) = pi (Neel phase), while to the right of the line, q(max) decreases from pi to pi/2 as J(2) is increased to large values (spiral phase). For delta = 1, the system is equivalent to two coupled chains as on a ladder and it is gapped for all values of the interchain coupling.
Resumo:
An analytical expression for the LL(T) decomposition for the Gaussian Toeplitz matrix with elements T(ij) = [1/(2-pi)1/2-sigma] exp[-(i - j)2/2-sigma-2] is derived. An exact expression for the determinant and bounds on the eigenvalues follows. An analytical expression for the inverse T-1 is also derived.
Resumo:
A symmetrizer of a nonsymmetric matrix A is the symmetric matrix X that satisfies the equation XA = A(t)X, where t indicates the transpose. A symmetrizer is useful in converting a nonsymmetric eigenvalue problem into a symmetric one which is relatively easy to solve and finds applications in stability problems in control theory and in the study of general matrices. Three designs based on VLSI parallel processor arrays are presented to compute a symmetrizer of a lower Hessenberg matrix. Their scope is discussed. The first one is the Leiserson systolic design while the remaining two, viz., the double pipe design and the fitted diagonal design are the derived versions of the first design with improved performance.
Resumo:
In the present investigation, Al 2024-15vol.%Al2O3 particulate (average size, 18 mu m) composites were fabricated using the liquid metallurgy route. The wear and friction characteristics of Al alloy 2024 and Al 2024-15vol.%Al2O3p, composite in the as-extruded and peak-aged conditions were studied using a pin-on-disc machine (with a steel disc as the counterface material). The worn surfaces, subsurfaces and the debris were analysed in a scanning electron microscope.The performance of the composite in the as-extruded condition is slightly inferior to that of the unreinforced alloy. However, in the T6 condition, although the wear rates of two materials are initially comparable, the unreinforced alloy seizes while the composite does not within the tested range employed. In the as-extruded condition, the presence of Al2O3 particles is not particularly beneficial as they fracture and result in extensive localized cracking and removal of material from the surface. In the peak-aged condition, however, while the unreinforced alloy exhibits severe plastic deformation and undergoes seizure, there is no significant change in the mechanism in the case of the composite. Except in the case of the peak-aged unreinforced alloy, worn surfaces of all other materials show the presence of an iron-rich layer.
Resumo:
It is argued that the nanometric dispersion of Bi in a Zn matrix is an ideal model system for heterogeneous nucleation experiments. The classical theory of heterogeneous nucleation with a hemispherical cap model is applied to analyse the nucleation data. It is shown that, unlike the results of earlier experiments, the derived site density for catalytic nucleation and contact angle are realistic and strongly suggest the validity of the classical theory. The surface energy between the 0001 plane of Zn and the <10(1)over bar 2> plane of Bi, which constitute the epitaxial nucleation interface, is estimated to be 39 mJ m(-2).
Resumo:
Carbon fibres/particles can be satisfactory reinforcing material in polymer, ceramic and metal matrices. Carbon fibres/particles reinforced polymer matrix composites and ceramic matrix composites are being used extensively in critical areas of application, but carbon fibre - metal matrix composites have not reached that stage yet. This paper discusses the salient aspects of production and specific properties of carbon fibre/particle reinforced cast metal matrix composites. It is envisaged that these materials will find extensive applications where cost, weight and thermal expansion are the key factors.
Resumo:
Distribution of particle reinforcements in cast composites is determined by the morphology of the solidification front. Interestingly, during solidification, the morphology of the interface is intrinsically affected by the presence of dispersed reinforcements. Thus the dispersoid distribution and length scale of matrix microstructure is a result of the interplay between these two. A proper combination of material and process parameters can be used to obtain composites with tailored microstructures. This requires the generation of a broad data base and optimization of the complete solidification process. The length scale of soldification microtructure has a large influence on the mechanical properties of the composites. This presentation addresses the concept of a particle distribution map which can help in predicting particle distribution under different solidification conditions Future research directions have also been indicated.
Resumo:
Carbon nanotubes containing small amounts of nitrogen are produced by the pyrolysis of aza-aromatics such as pyridine, methylpyrimidine and triazine over cobalt nanoparticles in an Ar atmosphere; good yields of such nanotubes are obtained by carrying out the pyrolysis of a mixture of pyridine and Fe(CO)(5) in flowing Ar + H-2.
Resumo:
Ultra low-load-dynamic microhardness testing facilitates the hardness measurements in a very low volume of the material and thus is suited for characterization of the interfaces in MMC's. This paper details the studies on age-hardening behavior of the interfaces in Al-Cu-5SiC(p) composites characterized using this technique. Results of hardness studies have been further substantiated by TEM observations. In the solution-treated condition, hardness is maximum at the particle/matrix interface and decreases with increasing distance from the interface. This could be attributed to the presence of maximum dislocation density at the interface which decreases with increasing distance from the interface. In the case of composites subjected to high temperature aging, hardening at the interface is found to be faster than the bulk matrix and the aging kinetics becomes progressively slower with increasing distance from the interface. This is attributed to the dislocation density gradient at the interface, leading to enhanced nucleation and growth of precipitates at the interface compared to the bulk matrix. TEM observations reveal that the sizes of the precipitates decrease with increasing distance from the interface and thus confirms the retardation in aging kinetics with increasing distance from the interface.