109 resultados para NETWORK MODEL


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Network theory has become an excellent method of choice through which biological data are smoothly integrated to gain insights into complex biological problems. Understanding protein structure, folding, and function has been an important problem, which is being extensively investigated by the network approach. Since the sequence uniquely determines the structure, this review focuses on the networks of non-covalently connected amino acid side chains in proteins. Questions in structural biology are addressed within the framework of such a formalism. While general applications are mentioned in this review, challenging problems which have demanded the attention of scientific community for a long time, such as allostery and protein folding, are considered in greater detail. Our aim has been to explore these important problems through the eyes of networks. Various methods of constructing protein structure networks (PSN) are consolidated. They include the methods based on geometry, edges weighted by different schemes, and also bipartite network of protein-nucleic acid complexes. A number of network metrics that elegantly capture the general features as well as specific features related to phenomena, such as allostery and protein model validation, are described. Additionally, an integration of network theory with ensembles of equilibrium structures of a single protein or that of a large number of structures from the data bank has been presented to perceive complex phenomena from network perspective. Finally, we discuss briefly the capabilities, limitations, and the scope for further explorations of protein structure networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multi-year observations from the network of ground-based observatories (ARFINET), established under the project `Aerosol Radiative Forcing over India' (ARFI) of Indian Space Research Organization and space-borne lidar `Cloud Aerosol Lidar with Orthogonal Polarization' (CALIOP) along with simulations from the chemical transport model `Goddard Chemistry Aerosol Radiation and Transport' (GOCART), are used to characterize the vertical distribution of atmospheric aerosols over the Indian landmass and its spatial structure. While the vertical distribution of aerosol extinction showed higher values close to the surface followed by a gradual decrease at increasing altitudes, a strong meridional increase is observed in the vertical spread of aerosols across the Indian region in all seasons. It emerges that the strong thermal convections cause deepening of the atmospheric boundary layer, which although reduces the aerosol concentration at lower altitudes, enhances the concentration at higher elevations by pumping up more aerosols from below and also helping the lofted particles to reach higher levels in the atmosphere. Aerosol depolarization ratios derived from CALIPSO as well as the GOCART simulations indicate the dominance of mineral dust aerosols during spring and summer and anthropogenic aerosols in winter. During summer monsoon, though heavy rainfall associated with the Indian monsoon removes large amounts of aerosols, the prevailing southwesterly winds advect more marine aerosols over to landmass (from the adjoining oceans) leading to increase in aerosol loading at lower altitudes than in spring. During spring and summer months, aerosol loading is found to be significant, even at altitudes as high as 4 km, and this is proposed to have significant impacts on the regional climate systems such as Indian monsoon. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chromatin acetylation is attributed with distinct functional relevance with respect to gene expression in normal and diseased conditions thereby leading to a topical interest in the concept of epigenetic modulators and therapy. We report here the identification and characterization of the acetylation inhibitory potential of an important dietary flavonoid, luteolin. Luteolin was found to inhibit p300 acetyltransferase with competitive binding to the acetyl CoA binding site. Luteolin treatment in a xenografted tumor model of head and neck squamous cell carcinoma (HNSCC), led to a dramatic reduction in tumor growth within 4 weeks corresponding to a decrease in histone acetylation. Cells treated with luteolin exhibit cell cycle arrest and decreased cell migration. Luteolin treatment led to an alteration in gene expression and miRNA profile including up-regulation of p53 induced miR-195/215, let7C; potentially translating into a tumor suppressor function. It also led to down regulation of oncomiRNAs such as miR-135a, thereby reflecting global changes in the microRNA network. Furthermore, a direct correlation between the inhibition of histone acetylation and gene expression was established using chromatin immunoprecipitation on promoters of differentially expressed genes. A network of dysregulated genes and miRNAs was mapped along with the gene ontology categories, and the effects of luteolin were observed to be potentially at multiple levels: at the level of gene expression, miRNA expression and miRNA processing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper the soft lunar landing with minimum fuel expenditure is formulated as a nonlinear optimal guidance problem. The realization of pinpoint soft landing with terminal velocity and position constraints is achieved using Model Predictive Static Programming (MPSP). The high accuracy of the terminal conditions is ensured as the formulation of the MPSP inherently poses final conditions as a set of hard constraints. The computational efficiency and fast convergence make the MPSP preferable for fixed final time onboard optimal guidance algorithm. It has also been observed that the minimum fuel requirement strongly depends on the choice of the final time (a critical point that is not given due importance in many literature). Hence, to optimally select the final time, a neural network is used to learn the mapping between various initial conditions in the domain of interest and the corresponding optimal flight time. To generate the training data set, the optimal final time is computed offline using a gradient based optimization technique. The effectiveness of the proposed method is demonstrated with rigorous simulation results.