179 resultados para NATRIURETIC PEPTIDE LEVELS
Resumo:
Trace of iron(III) are determined by differential pulse polarography in a medium of sodium hydroxide and sodium bromate using the catalytic current. Various cations do not interfere. The relative standard deviation is 2%.
Resumo:
The non-oxidative decarboxylation of aromatic acids is a poorly understood reaction. The transformation of 2,3-dihydroxybenzoic acid to catechol in the fungal metabolism of indole is a prototype of such a reaction. 2,3-Dihydroxybenzoic acid decarboxylase (EC 4.1.1.46) which catalyzes this reaction was purified to homogeneity from anthranilate induced cultures of Aspergillus oryzae using affinity chromatography. The enzyme did not require cofactors like NAD(+), PLP, TPP or metal ions for its activity. There was no spectral evidence for the presence of enzyme bound cofactors. The preparation, which was adjudged homogeneous by the criteria of SDS-PAGE, sedimentation analysis and N-terminal analysis, was characterized for its physicochemical and kinetic parameters. The enzyme was inactivated by group-specific modifiers like diethyl pyrocarbonate (DEPC) and N-ethylmaleimide (NEM). The kinetics of inactivation by DEPC suggested the presence of a single class of essential histidine residues, the second order rate constant of inactivation for which was 12.5 M(-1) min(-1). A single class of cysteine residues was modified by NEM with a second order rate constant of 33 M(-1) min(-1). Substrate analogues protected the enzyme against inactivation by both DEPC and NEM, suggesting the Location of the essential histidine and cysteine to be at the active site of the enzyme. The incorporation of radiolabelled NEM in a differential labelling experiment was 0.73 mol per mol subunit confirming the presence of a single essential cysteine per active-site. Differentially labelled enzyme was enzymatically cleaved and the peptide bearing the label was purified and sequenced. The active-site peptide LLGLAETCK and the N-terminal sequence MLGKIALEEAFALPRFEEKT did not bear any similarity to sequences reported in the Swiss-Prot Protein Sequence Databank, a reflection probably of the unique primary structure of this novel enzyme. The sequences reported in this study will appear in the Swiss-Prot Protein Sequence Databank under the accession number P80402.
Resumo:
The crystal structure of the peptide Boc-Phe-Val-OMe determined by X-ray diffraction methods is reported in this paper. The crystals grown from aqueous methanol are orthorhombic, space group P2(1)2(1)2(1), a = 11.843(2), b = 21.493(4), c = 26.676(4)Angstrom and V = 6790 Angstrom(3). Data were collected on a CAD4 diffractometer using MoK2 radiation (lambda = 0.7107 Angstrom) up to Bragg angle theta = 26 degrees. The structure was solved by direct methods and refined by a least-squares procedure to an R value of 6.8% for 3288 observed reflections. There are three crystallographically independent peptide molecules in the asymmetric unit. All the three molecules exhibit extended conformation. The sidechain of the Val(2) residue shows two different conformations. The conformation of the peptide Boc-Phe-Val-OMe is compared with the conformation of Ac-Delta Phe-Val-OH. It is observed that while Boc-Phe-Val-OMe exhibits an extended conformation, Ac-Delta Phe-Val-OH shows a folded conformation. The results of this comparison highlight the conformation constraining property of the Delta Phe residue. Interestingly, even though Boc-Phe-Val-OMe and Ac-Delta Phe-Val-OH are conformationally different, they exhibit similar packing patterns in the solid state. (C) Munksgaard 1995.
Resumo:
We have synthesised and determined the solution conformation and X-ray crystal structure of the octapeptide Ac-Delta Phe(1)-Val(2)-Delta Phe(3)-Phe(4)-Ala(5)-Val(6)-Delta Phe(7)-Gly(8)-OCH3 (Delta Phe = alpha,beta-dehydrophenylalanine) containing three Delta Phe residues as conformation constraining residues. In the solid state, the peptide folds into (i) an N-terminal (3)10(R)-helical pentapeptide segment, (ii) a middle non-helical segment, and (iii) a C-terminal incipient (3)10(L)-helical segment. The results of H-1 NMR data also suggest that a similar multiple-turn conformation for the peptide is largely maintained in solution. Though the C-terminal helix is incipient, the overall conformation of the octapeptide matches well with the conformation of the hairpins reported. Comparison of the pi-turn seen in the octapeptide molecule with those observed in proteins at the C-terminal end of helixes shows the structural similarity among them. A water molecule mediates the 5 --> 2 hydrogen bond in the pi-turn region. This is the first example of a water-inserted pi-turn in oligopeptides reported so far. Comparison between the present octapeptide and another (3)10(R)-helical dehydro nonapeptide Boc-Val-Delta Phe-Phe-Ala-Phe-Delta Phe-Val-Delta Phe-Gly-OCH3 solved by us recently, demonstrates the possible sequence-dependent conformational variations in alpha,beta-dehydrophenylalanine-containing oligopeptides.
Resumo:
A series of di- and tripeptide-based ebselen analogues has been synthesized. The compounds were characterized by H-1, C-13, and Se-77 NMR spectroscopy and mass spectral techniques. The glutathione peroxidase (GPx)-like antioxidant activity has been studied by using H2O2, tert-butyl hydroperoxide (tBuOOH), and cumene hydroperoxide (Cum-OOH) as substrates, and glutathione (GSH) as a co-substrate. Although all the peptide-based compounds have a selenazole ring similar to that of ebselen, the GPx activity of these compounds highly depends on the nature of the peptide moiety attached to the nitrogen atom of the selenazole ring. It was observed that the introduction of a phenylalanine (Phe) amino acid residue in the N-terminal reduces the activity in all three peroxide systems. On the other hand, the introduction of aliphatic amino acid residues such as valine (Val) significantly enhances the GPx activity of the ebselen analogues. The difference in the catalytic activity of dipeptide-based ebselen derivatives can be ascribed mainly to the change in the reactivity of these compounds toward GSH and peroxide. Although the presence of the Val-Ala-CO2Me moiety facilitates the formation of a catalytically active selenol species, the reaction of ebselen analogues that has a Phe-Ile-CO2Me residue with GSH does not generate the corresponding selenol. To understand the antioxidant activity of the peptide-based ebselen analogues in the absence of GSH, these compounds were studied for their ability to inhibit peroxynitrite (PN)-mediated nitration of bovine serum albumin (BSA) and oxidation of dihydrorhodamine 123. In contrast to the GPx activity, the PN-scavenging activity of the Phe-based peptide analogues was found to be comparable to that of the Val-based compounds. However, the introduction of an additional Phe residue to the ebselen analogue that had a Val-Ala dipeptide significantly reduced the potency of the parent compound in PN-mediated nitration.
Resumo:
It is well known that hyperprolactinaemia in the human leads to infertility. The therapy of choice in India has been the administration of bromocriptine (BCR) as tablets, This mode of administration is generally accompanied by undesirable side-effects such as giddiness, nausea, vomiting and postural hypotension, We demonstrate here the efficacy of microdoses of BCR administered intranasally (IN) to hyperprolactinaemic patients (n = 6) in reducing significantly the elevated serum prolactin levels and maintain them within the normal range, The IN mode of BCR administration, in addition to reducing the effective dose of the drug by 4-20-fold, results in little or no side-effects otherwise associated with oral therapy.
Resumo:
alpha,beta-Dehydrophenylalanine residues constrain the peptide backbone to beta-bend conformation. A pentapeptide containing four consecutive (Delta Phe) residues has been synthesised and crystallised. The peptide Boc-LAla-Delta Phe-Delta Phe-Delta Phe-Delta Phe-NHMe (C45H46N6O7, MW = 782.86) was crystallised from an acetonitrile/methanol mixture. The crystal belongs to the orthorhombic space group P2(1)2(1)2(1) With a = 19.455(6), b = 20.912(9), c = 11.455(4) Angstrom and Z = 4. The X-ray (MoKalpha, lambda = 0.7107 Angstrom) intensity data were collected using the Rigaku-AFC7 diffractrometer. The crystal structure was determined by direct methods and refined using the least-squares technique, R = 8.41% for 1827 reflections with \F-o\ > 4 sigma\F-o\. The molecule contains the largest stretch of consecutive dehydrophenylalanine residues whose crystal structure has been determined so far. The peptide adopts left-handed 3(10)-helical conformation despite the presence of LAla at the N-terminus. The mean phi, psi values, averaged across the last four residues are 56.8 degrees and 17.5 degrees, respectively. There are four 4-->1 intramolecular hydrogen bonds, characteristic of the 3(10)-helix. In the crystal each molecule interacts with four crystallographically symmetric molecules with one hydrogen bond each.
Resumo:
Total tRNAs isolated from chloroplasts and etioplasts of cucumber cotyledons were compared with respect to amino acid acceptance, isoacceptor distribution and extent of modification. Aminoacylation of the tRNAs with nine different amino acids studied indicated that the relative acceptor activities of chloroplast total tRNAs for four amino acids are significantly higher than etioplast total tRNAs. Two dimensional polyacrylamide gel electrophoresis (2D-PAGE) of chloroplast total tRNAs separated at least 32 spots, while approximately 41 spots were resolved from etioplast total tRNAs. Comparison of the reversed-phase chromatography (RPC-5) profiles of chloroplast and etioplast leucyl-, lysyl-, phenylalanyl-, and valyl-tRNA species showed no qualitative differences in the elution profiles. However, leucyl-, lysyl- and valyl-tRNA species showed quantitative differences in the relative amounts of the isoaccepting species present in chloroplasts and etioplasts. The analysis of modified nucleotides of total tRNAs from the two plastid types indicated that total tRNA from etioplasts was undermodified with respect to ribothymidine, isopentenyladenosine/hydroxy-isopentenyladenosine, 1-methylguanosine and 2-o-methylguanosine. This indicates that illumination may cause de novo synthesis of chloroplast tRNA-modifying enzymes encoded for by nuclear genes leading to the formation of highly modified tRNAs in chloroplasts. Based on these results, we speculate that the observed decrease in levels of aminoacylation, variations in the relative amounts of certain isoacceptors, and differences in the electrophoretic mobilities of some extra tRNA spots in the etioplast total tRNAs as compared to chloroplast total tRNAs could be due to some partially undermodified etioplast tRNAs. Taken together, the data suggested that the light-induced transformation of etioplasts into chloroplasts is accompanied by increases in the relative levels of some functional chloroplast tRNAs by post transcriptional nucleotide modifications.
Resumo:
An N-alpha-protected model pentapeptide containing two consecutive Delta Phe residues, Boc-Leu-Delta Phe-Delta Phe-Ala-Phe-NHMe, has been synthesized by solution methods and fully characterized. H-1-nmr studies provided evidence for the occurrence of a significant population of a conformer having three consecutive, intramolecularly II-bonded beta-bends in solution. The solid state structure has been determined by x-ray diffraction methods. The crystals grown from aqueous methanol are orthorhombic, space group P2(1)2(1)2(1),, a = 11.503(2), b = 16.554(2), c = 22.107(3) Angstrom, V = 4209(1) Angstrom,(3) and Z = 4. The x-ray data were collected on a CAD4 diffractometer using CuKalpha radiation (lambda = 1.5418 Angstrom). The structure was determined using direct methods and refined by full-matrix least-squares procedure. The R factor is 5.3%. The molecule is characterized by a right handed 3(10)-helical conformation ((phi) = -68.2 degrees (psi) = -26.3 degrees), which is made up of two consecutive type III beta-bends and one type I beta-bend. In the solid state the helical molecules are aligned head-to-tail, thus forming long rod like structures. A comparison with other peptide structures containing consecutive Delta Phe residues is also provided. The present study confirms that the -Delta Phe-Delta Phe-sequence can be accommodated in helical structures. (C) 1997 John Wiley & Sons, Inc.
Resumo:
A beta (39-43 aminoacid residues) is the principal peptide component of amyloid deposits in Alzheimer's disease (AD). A beta peptide is derived from the amyloid precursor protein (APP) in which mutations give rise to many forms of familial AD. Aluminium is reported to play a key role in inducing conformational change in the synthetic beta-amyloid peptide (1-40)from alpha-helix to beta-pleated sheet, leading to aggregation and fibrillar formation. We have studied the interaction of amino acid-Al complexes such as D-Asp-Al and L-Glu-Al with A beta(1-40) in TFE/buffer (70% TFE and 30% H2O v/v pH 6.7) mixture using CD spectroscopy. The interaction of either of these amino acid complexes with A beta(1-40) results in loss of alpha-helical content and the peptide is more unstructured compared to free Al3+ in the solution. Our data strongly support the idea, that the Al3+ in the form of aminoacid-Al complexes is more effective in inducing random coil conformation in the A beta peptide than the free Al3+ present in the solution.
Resumo:
Results of Western blot analysis carried out with an interstitial cell extract from male guinea pig and ovarian extract from immature female rats administered equine chorionic gonadotropin (eCG) provide supportive evidence to our earlier suggestion that an 8-kDa peptide is involved in acquisition of steroidogenic capacity by the rat Leydig cells. It was found that though the signal was observed in other tissues such as liver, kidney and lung which do not produce gonadal hormones, the peptide was modulated only by lutenizing hormone (LH) in the rat Leydig cells.
Resumo:
An attempt was made to study the deep level impurities and defects introduced into thyristor grade silicon under different processing conditions. DLTS, C-V and I-V measurements were carried out. The ideality factors of the diodes is around 1-7. Activation energy, trap density and minority carrier lifetime were measured.
Resumo:
Angiotensin converting enzyme (ACE) regulates the blood pressure by converting angiotensin I to angiotensin II and bradykinin to bradykinin 1-7. These two reactions elevate the blood pressure as angiotensin II and bradykinin are vasoconstrictory and vasodilatory hormones, respectively. Therefore, inhibition of ACE is an important strategy for the treatment of hypertension. The natural substrates of ACE, i.e., angiotensin II and bradykinin, contain a Pro-Phe motif near the site of hydrolysis. Therefore, there may be a Pro-Phe binding pocket at the active site of ACE, which may facilitate the substrate binding. In view of this, we have synthesized a series of thiol-and selenol-containing dipeptides and captopril analogues and studied their ACE inhibition activities. This study reveals that both the selenol or thiol moiety and proline residues are essential for ACE inhibition. Although the introduction of a Phe residue to captopril and its selenium analogue considerably reduces the inhibitory effect, there appears to be a Phe binding pocket at the active site of ACE.
Resumo:
The Walker sequence, GXXXXGKT, present in all the six subunits of F-1-ATPase exists in a folded form, known as phosphate-binding loop (P-loop). Analysis of the Ramachandran angles showed only small RMS deviation between the nucleotide-bound and nucleotide-free forms. This indicated a good overlap of the backbone loops. The catalytic beta-subunits (chains D, E and F) showed significant changes in the Ramachandran angles and the side chain torsion angles, but not the structural alpha-subunits (chains A, B and C). Most striking among these are the changes associated with Val160 and Gly161 corresponding to a flip in the peptide unit between them when a nucleotide is bound (chains D or F compared to nucleotide-free chain E). The conformational analysis further revealed a hitherto unnoticed hydrogen bond between amide-N of the flipped Gly161 and terminal phosphate-O of the nucleotide. This assigns a role for this conserved amino acid, otherwise ignored, of making an unusual direct interaction between the peptide backbone of the enzyme protein and the incoming nucleotide substrate. Significance of this interaction is enhanced, as it is limited only to the catalytic subunits, and also likely to involve a mechanical rotation of bonds of the peptide unit. Hopefully this is part of the overall events that link the chemical hydrolysis of ATP with the mechanical rotation of this molecule, now famous as tiny molecular motor.
Resumo:
Propargyl pentafluorophenyl carbonate was synthesised in quantitative yield by the reaction of propargyl chloroformate and pentafluorophenol. All the N-propargyloxycarbonyl (N-Poc) amino acids were obtained in good yield. The use of Poc-OPfp in peptide synthesis has been explored. (C) 2002 Elsevier Science Ltd. All rights reserved.