165 resultados para Multiphase microstructure


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disks of a cast Al-7 % Si alloy were processed through high-pressure torsion (HPT) for 1/4, 1/2, 1, 5, and 10 revolutions under a pressure of 6.0 GPa and at temperatures of 298 and 445 K. The hardness of the samples after processing was significantly higher than in the cast sample, and the hardness profiles across the samples became more uniform with increasing numbers of turns. Processing at higher temperature gave lower hardness values. Experiments were conducted to examine the effects of HPT processing on various microstructural aspects of the cast Al-7 % Si alloy such as the grain size, the Taylor factor, and the fraction of high-angle grain boundaries. The results demonstrate that there is a correlation between trends in the microhardness values and the observed microstructures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the synthesis, microstructure and thermal expansion studies on Ca0 center dot 5 + x/2Sr0 center dot 5 + x/2Zr4P6 -aEuro parts per thousand 2x Si-2x O-24 (x = 0 center dot 00 to 1 center dot 00) system which belongs to NZP family of low thermal expansion ceramics. The ceramics synthesized by co-precipitation method at lower calcination and the sintering temperatures were in pure NZP phase up to x = 0 center dot 37. For x a parts per thousand yen 0 center dot 5, in addition to NZP phase, ZrSiO4 and Ca2P2O7 form as secondary phases after sintering. The bulk thermal expansion behaviour of the members of this system was studied from 30 to 850 A degrees C. The thermal expansion coefficient increases from a negative value to a positive value with the silicon substitution in place of phosphorous and a near zero thermal expansion was observed at x = 0 center dot 75. The amount of hysteresis between heating and cooling curves increases progressively from x = 0 center dot 00 to 0 center dot 37 and then decreases for x > 0 center dot 37. The results were analysed on the basis of formation of the silicon based glassy phase and increase in thermal expansion anisotropy with silicon substitution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current study describes the evolution of microstructure and texture in an Al-Zn-Mg-Cu-Zr-based 7010 aluminum alloy during different modes of hot cross-rolling. Processing of materials involves three different types of cross-rolling. The development of texture in the one-step cross-rolled specimen can be described by a typical beta-fiber having the maximum intensity near Copper (Cu) component. However, for the multi-step cross-rolled specimens, the as-rolled texture is mainly characterized by a strong rotated-Brass (Bs) component and a very weak rotated-cube component. Subsequent heat treatment leads to sharpening of the major texture component (i.e., rotated-Bs). Furthermore, the main texture components in all the specimens appear to be significantly rotated in a complex manner away from their ideal positions because of non-symmetric deformations in the two rolling directions. Detailed microstructural study indicates that dynamic recovery is the dominant restoration mechanism operating during the hot rolling. During subsequent heat treatment, static recovery dominates, while a combination of particle-stimulated nucleation (PSN) and strain-induced grain boundary migration (SIBM) causes partial recrystallization of the grain structure. The aforementioned restoration mechanisms play an important role in the development of texture components. The textural development in the current study could be attributed to the combined effects of (a) cross-rolling and inter-pass annealing that reduce the intensity of Cu component after each successive pass, (b) recrystallization resistance of Bs-oriented grains, (c) stability of Bs texture under cross-rolling, and (d) Zener pinning by Al3Zr dispersoids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the current study, the evolution of microstructure and texture has been studied for Ti-6Al-4V-0.1B alloy during sub-transus thermomechanical processing. This part of the work deals with the deformation response of the alloy by rolling in the (alpha + beta) phase field. The (alpha + beta) annealing behavior of the rolled specimen is communicated in part II. Rolled microstructures of the alloys exhibit either kinked or straight alpha colonies depending on their orientations with respect to the principal rolling directions. The Ti-6Al-4V-0.1B alloy shows an improved rolling response compared with the alloy Ti-6Al-4V because of smaller alpha lamellae size, coherency of alpha/beta interfaces, and multiple slip due to orientation factors. Accelerated dynamic globularization for this alloy is similarly caused by the intralamellar transverse boundary formation via multiple slip and strain accumulation at TiB particles. The (0002)(alpha) pole figures of rolled Ti-6Al-4V alloy shows ``TD splitting'' at lower rolling temperatures because of strong initial texture. Substantial beta phase mitigates the effect of starting texture at higher temperature so that ``RD splitting'' characterizes the basal pole figure. Weak starting texture and easy slip transfer for Ti-6Al-4V-0.1B alloy produce simultaneous TD and RD splittings in basal pole figures at all rolling temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first part of this study describes the evolution of microstructure and texture in Ti-6Al-4V-0.1B alloy during sub-transus rolling vis-A -vis the control alloy Ti-6Al-4V. In the second part, the static annealing response of the two alloys at self-same conditions is compared and the principal micromechanisms are analyzed. Faster globularization kinetics has been observed in the Ti-6Al-4V-0.1B alloy for equivalent annealing conditions. This is primarily attributed to the alpha colonies, which leads to easy boundary splitting via multiple slip activation in this alloy. The other mechanisms facilitating lamellar to equiaxed morphological transformations, e.g., termination migration and cylinderization, also start early in the boron-modified alloy due to small alpha colony size, small aspect ratio of the alpha lamellae, and the presence of TiB particles in the microstructure. Both the alloys exhibit weakening of basal fiber (ND||aOE (c) 0001 >) and strengthening of prism fiber (RD||aOE (c) aOE(a)) upon annealing. A close proximity between the orientations of fully globularized primary alpha and secondary alpha phases during alpha -> beta -> alpha transformation has accounted for such a texture modification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Cu-Cu multilayer processed by accumulative roll bonding was deformed to large strains and further annealed. The texture of the deformed Cu-Cu multilayer differs from the conventional fcc rolling textures in terms of higher fractions of Bs and RD-rotated cube components, compared with the volume fraction of Cu component. The elongated grain shape significantly affects the deformation characteristics. Characteristic microstructural features of both continuous dynamic recrystallization and discontinuous dynamic recrystallization were observed in the microtexture measurements. X-ray texture measurements of annealing of heavily deformed multilayer demonstrate constrained recrystallization and resulted in a bimodal grain size distribution in the annealed material at higher strains. The presence of cube- and BR-oriented grains in the deformed material confirms the oriented nucleation as the major influence on texture change during recrystallization. Persistence of cube component throughout the deformation is attributed to dynamic recrystallization. Evolution of RD-rotated cube is attributed to the deformation of cube components that evolve from dynamic recrystallization. The relaxation of strain components leads to Bs at larger strains. Further, the Bs component is found to recover rather than recrystallize during deformation. The presence of predominantly Cu and Bs orientations surrounding the interface layer suggests constrained annealing behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microstructural changes of Ni-rich NiTi shape memory alloy during thermal and thermo-mechanical cycling have been investigated using Electron Back Scattered Diffraction. A strong dependence of the orientation of the prior austenite grain on the misorientation development has been observed during thermal cycling and thermo-mechanical cycling. This effect is more pronounced at the grain boundaries compared to grain interior. At a larger applied strain, the volume fraction of stabilized martensite phase increases with increase in the number of cycling. Deformation within the martensite leads to stabilization of martensitic phase even at temperatures slightly above the austenite finish temperature. Modulus variation with respect to temperature has been explained on the basis of martensitic transformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The plastic deformation behavior and dynamic recrystallization (DRX) in homogenized AZ31 Mg alloy was investigated in uniaxial compression in the temperature range between 150 and 400 degrees C with strain rates ranging from 10(-3) to 10(2) s(-1). Twinning was found to contribute significantly during the early stages of deformation. The onset of twinning was examined in detail by recourse to the examination of the appearance of first local maxima before peak strain in the stress-strain responses and the second derivative of stress with strain. High strain hardening rate was observed immediately after the onset of twinning and was found to increase with the Zener-Hollomon parameter. DRX was observed at temperatures above 250 degrees C whereas deformation at lower temperatures (< 250 degrees C) leads to extensive twinning at all the strain rates. At intermediate temperatures of 250-300 degrees C, plastic strains tend to localize near grain/twin boundaries, confining DRX only to these regions. Increase in the temperature promotes non-basal slip, which, in turn, leads to uniform deformation; DRX too becomes uniform. Deformation behavior in three different regimes of temperature is discussed. The dependence of critical stress for the onset of DRX and peak flow stress on temperature and strain rate are also described. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Friction stir processing was carried out on the Al-Mg-Mn alloy to achieve ultrafine grained microstructure. The evolution of microstructure and micro-texture was studied in different regions of the deformed sample, namely nugget zone, thermo-mechanically affected zone (TMAZ) and base metal. The average grain sizes of the nugget zone, TMAZ and base metal are 1.5 mu m +/- 0.5 mu m, 15 mu m +/- 8 mu m, and 80 mu m +/- 10 mu m, respectively. The TMAZ exhibits excessive deformation banding structure and sub-grain formation. The orientation gradient within the sub-grain is dependent on grain size, orientation, and distance from nugget zone. The microstructure was partitioned based on the grain orientation spread and grain size values to separate the recrystallized fraction from the deformed region in order to understand the micromechanism of grain refinement. The texture of both deformed and recrystallized regions are similar in nature. Microstructure and texture analysis suggest that the restoration processes are different in different regions of the processed sample. The transition region between nugget zone and TMAZ exhibits large elongated grains surrounded by fine equiaxed grains of different orientation which indicate the process of discontinuous dynamic recrystallization. Within the nugget zone, similar texture between deformed and recrystallized grain fraction suggests that the restoration mechanism is a continuous process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hot deformation of pearlitic steel was carried out to examine the overall deformation response to microstructural evolution. To understand the mechanisms operative during hot deformation, compression tests were carried out at various temperatures in the range 400(-)600 degrees C and strain rates in the range 0.001-10 s(-1). The flow curves were analyzed to examine the occurrence of dynamic recrystallization. The evolution of microstructure in hot deformed samples is analysed using EBSD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic study of the evolution of the microstructure and crystallographic texture during free end torsion of a single phase magnesium alloy Mg-3Al-0.3Mn (AM30) was carried out. The torsion tests were done at a temperature of 250 degrees C to different strain levels in order to examine the progressive evolution of the microstructure and texture. A detailed microstructural analysis was performed using the electron back-scattered diffraction technique. The observed microstructural features indicated the occurrence of continuous dynamic recovery and recrystallization, starting with the formation of subgrains and ending with recrystallized grains with high angle boundaries. Texture and microstructure evolution were analysed by decoupling the effects of imposed shear and of dynamic recrystallization. Microstructure was partitioned to separate the deformed grains from the recovered/recrystallized grains. The texture of the deformed part could be reproduced by viscoplastic self-consistent polycrystal simulations. Recovered/recrystallized grains were formed as a result of rotation of these grains so as to reach a low plastic energy state. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with the evolution of microstructure and texture during hot rolling of hafnium containing NiTi based shape memory alloy Ni49.4Ti38.6Hf12. The formation of the R-phase has been associated with the precipitation of (Ti,Hf)(2)Ni phase. The crystallographic texture of the parent phase B2 as well as the product phases R and B19' have been determined. It has been found that the variant selection during the B2 -> R phase transformation is quite strong compared to the case of the B2 -> B19' transformation. During deformation, the texture of the austenite phase evolves with strong Goss and Bs components. After transformation to martensitic structure, it gives rise to a 011]parallel to RD fiber. Microstructure and texture studies reveal the occurrence of partial dynamic recrystallization during hot rolling. Large strain heterogeneities that occur surrounding (Ti,Hf)(2)Ni precipitates are relieved through extended dynamic recovery instead of particle stimulated nucleation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we present a new computational approach for studying the effect of melt convection on solidification at the micro-scale level. Models for dendritic and eutectic growth are developed on the basis of the enthalpy technique and incorporate the presence of flow in the domain. Simulation results show the growth and motion of dendrites and evolution of eutectic lamellae and their interaction with melt flow. The present study provides the foundation for development of an efficient generalized micro-scale solidification model, which can potentially be coupled with system-scale models based on the same framework.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the purpose of water purification, novel and low-cost adsorbents which are promising replacements for activated carbon are being actively pursued. However, a single-phase material that adsorbs both cationic and anionic species remains elusive. Hence, a low-cost, multiphase adsorbent bed that purifies water containing both anionic and cationic pollutants is a desirable alternative. We choose anionic (Congo red, Orange G) and cationic (methylene blue, malachite green) dyes as model pollutants. These dyes are chosen since they are widely found in effluents from textile, leather, fishery, and pharmaceutical industries, and their carcinogenic, mutagenic, genotoxic, and cytotoxic impact on mammalian cells is well-established. We show that ZnO, (Zn0.24Cu0.76)O and cobalt ferrite based multiphase fixed adsorbent bed efficiently adsorbs model anionic (Congo red, Orange G) and cationic (methylene blue and malachite green) pollutants, and their complex mixtures. All adsorbent phases are synthesized using room-temperature, high-yield (similar to 96-100%), green chemical processes. The nanoadsorbents are characterized by using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area analysis, and zeta potential measurements. The constituent nanophases are deliberately chosen to be beyond 50 nm, in order to avoid the nanotoxic size regime of oxides. Adsorption characteristics of each of the phases are examined. Isotherm based analysis shows that adsorption is both spontaneous and highly favorable. zeta potential measurements indicate that electrostatic interactions are the primary driving force for the observed adsorption behavior. The isotherms obtained are best described using a composite Langmuir-Freundlich model. Pseudo-first-order, rapid kinetics is observed (with adsorption rate constants as high as 0.1-0.2 min(-1) in some cases). Film diffusion is shown to be the primary mechanism of adsorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A356 and 6061 aluminum alloys were joined by friction stir welding at constant tool rotational rate with different tool-traversing speeds. Thermomechanical data of welding showed that increment in tool speed reduced the pseudo heat index and temperature at weld nugget (WN). On the other hand, volume of material within extrusion zone, strain rate, and Zenner Hollomon parameter were reduced with decrease in tool speed. Optical microstructure of WN exhibited nearly uniform dispersion of Si-rich particles, fine grain size of 6061 Al alloy, and disappearance of second phase within 6061 Al alloy. With enhancement in welding speed, matrix grain size became finer, yet size of Si-rich particles did not reduce incessantly. Size of Si-rich particles was governed by interaction time between tool and substrate. Mechanical property of WN was evaluated. It has been found that the maximum joint efficiency of 116% with respect to that of 6061 alloy was obtained at an intermediate tool-traversing speed, where matrix grain size was significantly fine and those of Si-rich particles were substantially small.