131 resultados para Multiparametric measurements
Resumo:
A sequence of moments obtained from statistical trials encodes a classical probability distribution. However, it is well known that an incompatible set of moments arises in the quantum scenario, when correlation outcomes associated with measurements on spatially separated entangled states are considered. This feature, viz., the incompatibility of moments with a joint probability distribution, is reflected in the violation of Bell inequalities. Here, we focus on sequential measurements on a single quantum system and investigate if moments and joint probabilities are compatible with each other. By considering sequential measurement of a dichotomic dynamical observable at three different time intervals, we explicitly demonstrate that the moments and the probabilities are inconsistent with each other. Experimental results using a nuclear magnetic resonance system are reported here to corroborate these theoretical observations, viz., the incompatibility of the three-time joint probabilities with those extracted from the moment sequence when sequential measurements on a single-qubit system are considered.
Resumo:
Perception of operator influences ultrasound image acquisition and processing. Lower costs are attracting new users to medical ultrasound. Anticipating an increase in this trend, we conducted a study to quantify the variability in ultrasonic measurements made by novice users and identify methods to reduce it. We designed a protocol with four presets and trained four new users to scan and manually measure the head circumference of a fetal phantom with an ultrasound scanner. In the first phase, the users followed this protocol in seven distinct sessions. They then received feedback on the quality of the scans from an expert. In the second phase, two of the users repeated the entire protocol aided by visual cues provided to them during scanning. We performed off-line measurements on all the images using a fully automated algorithm capable of measuring the head circumference from fetal phantom images. The ground truth (198.1 +/- 1.6 mm) was based on sixteen scans and measurements made by an expert. Our analysis shows that: (1) the inter-observer variability of manual measurements was 5.5 mm, whereas the inter-observer variability of automated measurements was only 0.6 mm in the first phase (2) consistency of image appearance improved and mean manual measurements was 4-5 mm closer to the ground truth in the second phase (3) automated measurements were more precise, accurate and less sensitive to different presets compared to manual measurements in both phases. Our results show that visual aids and automation can bring more reproducibility to ultrasonic measurements made by new users.
Resumo:
Stochastic modelling is a useful way of simulating complex hard-rock aquifers as hydrological properties (permeability, porosity etc.) can be described using random variables with known statistics. However, very few studies have assessed the influence of topological uncertainty (i.e. the variability of thickness of conductive zones in the aquifer), probably because it is not easy to retrieve accurate statistics of the aquifer geometry, especially in hard rock context. In this paper, we assessed the potential of using geophysical surveys to describe the geometry of a hard rock-aquifer in a stochastic modelling framework. The study site was a small experimental watershed in South India, where the aquifer consisted of a clayey to loamy-sandy zone (regolith) underlain by a conductive fissured rock layer (protolith) and the unweathered gneiss (bedrock) at the bottom. The spatial variability of the thickness of the regolith and fissured layers was estimated by electrical resistivity tomography (ERT) profiles, which were performed along a few cross sections in the watershed. For stochastic analysis using Monte Carlo simulation, the generated random layer thickness was made conditional to the available data from the geophysics. In order to simulate steady state flow in the irregular domain with variable geometry, we used an isoparametric finite element method to discretize the flow equation over an unstructured grid with irregular hexahedral elements. The results indicated that the spatial variability of the layer thickness had a significant effect on reducing the simulated effective steady seepage flux and that using the conditional simulations reduced the uncertainty of the simulated seepage flux. As a conclusion, combining information on the aquifer geometry obtained from geophysical surveys with stochastic modelling is a promising methodology to improve the simulation of groundwater flow in complex hard-rock aquifers. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
The occurrence of musth, a period of elevated levels of androgens and heightened sexual activity, has been well documented for the male Asian elephant (Elephas maximus). However, the relationship between androgen-dependent musth and adrenocortical function in this species is unclear. The current study is the first assessment of testicular and adrenocortical function in free-ranging male Asian elephants by measuring levels of testosterone (androgen) and cortisol (glucocorticoid - a physiological indicator of stress) metabolites in faeces. During musth, males expectedly showed significant elevation in faecal testosterone metabolite levels. Interestingly, glucocorticoid metabolite concentrations remained unchanged between musth and non-musth periods. This observation is contrary to that observed with wild and captive African elephant bulls and captive Asian bull elephants. Our results show that musth may not necessarily represent a stressful condition in free-ranging male Asian elephants.
Resumo:
Background: Deviated nasal septum (DNS) is one of the major causes of nasal obstruction. Polyvinylidene fluoride (PVDF) nasal sensor is the new technique developed to assess the nasal obstruction caused by DNS. This study evaluates the PVDF nasal sensor measurements in comparison with PEAK nasal inspiratory flow (PNIF) measurements and visual analog scale (VAS) of nasal obstruction. Methods: Because of piezoelectric property, two PVDF nasal sensors provide output voltage signals corresponding to the right and left nostril when they are subjected to nasal airflow. The peak-to-peak amplitude of the voltage signal corresponding to nasal airflow was analyzed to assess the nasal obstruction. PVDF nasal sensor and PNIF were performed on 30 healthy subjects and 30 DNS patients. Receiver operating characteristic was used to analyze the DNS of these two methods. Results: Measurements of PVDF nasal sensor strongly correlated with findings of PNIF (r = 0.67; p < 0.01) in DNS patients. A significant difference (p < 0.001) was observed between PVDF nasal sensor measurements and PNIF measurements of the DNS and the control group. A cutoff between normal and pathological of 0.51 Vp-p for PVDF nasal sensor and 120 L/min for PNIF was calculated. No significant difference in terms of sensitivity of PVDF nasal sensor and PNIF (89.7% versus 82.6%) and specificity (80.5% versus 78.8%) was calculated. Conclusion: The result shows that PVDF measurements closely agree with PNIF findings. Developed PVDF nasal sensor is an objective method that is simple, inexpensive, fast, and portable for determining DNS in clinical practice.
Resumo:
Chalcogenide glasses are interesting materials for their infrared transmitting properties and photo-induced effects. This paper reports the influence of light on the optical properties of Sb10S40Se50 thin films. The amorphous nature and chemical composition of the deposited film was studied by X-ray diffraction and energy dispersive X-ray analysis (EDAX). The optical constants, i.e., refractive index, extinction coefficient, and optical band gap as well as film thickness are determined from the measured transmission spectra using the Swanepoel method. The dispersion of the refractive index is discussed in terms of the single-oscillator Wemple-DiDomenico model. The dispersion energy parameter was found to be less for the laser-irradiated film, which indicates the laser-irradiated film is more microstructurally disordered as compared to the as-prepared film. It is observed that laser-irradiation of the films leads to decrease in optical band gap (photo-darkening) while increase in refractive index. The decrease in the optical band gap is explained on the basis of change in nature of films due to chemical disorderness and the increase in refractive index may be due to the densification of films with improved grain structure because of microstructural disorderness in the films. The optical changes are supported by X-ray photoelectron spectroscopy data. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
We develop iterative diffraction tomography algorithms, which are similar to the distorted Born algorithms, for inverting scattered intensity data. Within the Born approximation, the unknown scattered field is expressed as a multiplicative perturbation to the incident field. With this, the forward equation becomes stable, which helps us compute nearly oscillation-free solutions that have immediate bearing on the accuracy of the Jacobian computed for use in a deterministic Gauss-Newton (GN) reconstruction. However, since the data are inherently noisy and the sensitivity of measurement to refractive index away from the detectors is poor, we report a derivative-free evolutionary stochastic scheme, providing strictly additive updates in order to bridge the measurement-prediction misfit, to arrive at the refractive index distribution from intensity transport data. The superiority of the stochastic algorithm over the GN scheme for similar settings is demonstrated by the reconstruction of the refractive index profile from simulated and experimentally acquired intensity data. (C) 2014 Optical Society of America
Resumo:
An optimal measurement selection strategy based on incoherence among rows (corresponding to measurements) of the sensitivity (or weight) matrix for the near infrared diffuse optical tomography is proposed. As incoherence among the measurements can be seen as providing maximum independent information into the estimation of optical properties, this provides high level of optimization required for knowing the independency of a particular measurement on its counterparts. The proposed method was compared with the recently established data-resolution matrix-based approach for optimal choice of independent measurements and shown, using simulated and experimental gelatin phantom data sets, to be superior as it does not require an optimal regularization parameter for providing the same information. (C) 2014 Society of Photo-Optical Instrumentation Engineers (SPIE)
Resumo:
The nature of the signal due to light beam induced current (LBIC) at the remote contacts is verified as a lateral photovoltage for non-uniformly illuminated planar p-n junction devices; simulation and experimental results are presented. The limitations imposed by the ohmic contacts are successfully overcome by the introduction of capacitively coupled remote contacts, which yield similar results without any significant loss in the estimated material and device parameters. It is observed that the LBIC measurements introduce artefacts such as shift in peak position with increasing laser power. Simulation of LBIC signal as a function of characteristic length L-c of photo-generated carriers and for different beam diameters has resulted in the observed peak shifts, thus attributed to the finite size of the beam. Further, the idea of capacitively coupled contacts has been extended to contactless measurements using pressure contacts with an oxidized aluminium electrodes. This technique avoids the contagious sample processing steps, which may introduce unintentional defects and contaminants into the material and devices under observation. Thus, we present here, the remote contact LBIC as a practically non-destructive tool in the evaluation of device parameters and welcome its use during fabrication steps. (C) 2014 AIP Publishing LLC.
Resumo:
Synthesis and structural characterization of two novel symmetrical banana mesogens built from resorcinol with seven phenyl rings linked by ester and imine with a terminal dodecyl/dodecyloxy chain has been carried out. Density functional theory (DFT) has been employed for obtaining the geometry optimized structures, the dipole moments and C-13 NMR chemical shifts. The HOPM and DSC studies revealed enantiotropic B-2 and B-7 phases for the dodecyl and dodecyloxy homologs respectively. The powder X-ray studies of both the mesogens indicate the presence of layer ordering. The polarization measurements reveal an anti-ferroelectric switching for the B-2 phase of the dodecyl homolog whose structure has been identified as SmCSPA. The B-7 phase of the dodecyloxy homolog was found to be non-switchable. High resolution C-13 NMR study of the dodecyl homolog in its mesophase has been carried out. C-13-H-1 dipolar couplings obtained from the 2-dimensional separated local field spectroscopy experiment were used to obtain the orientational order parameters of the different segments of the mesogen. Very large C-13-H-1 dipolar couplings observed for the carbons of the central phenyl ring (9.7-12.3 kHz) in comparison to the dipolar couplings of those of the side arm phenyl rings (less than 3 kHz) are a direct consequence of the ordering in the banana phase and the shape of the molecule. From the ratio of the local order parameter values, the bent-angle of the mesogen could be determined in a straight forward manner to be 120.5 degrees.
Resumo:
Measuring forces applied by multi-cellular organisms is valuable in investigating biomechanics of their locomotion. Several technologies have been developed to measure such forces, for example, strain gauges, micro-machined sensors, and calibrated cantilevers. We introduce an innovative combination of techniques as a high throughput screening tool to assess forces applied by multiple genetic model organisms. First, we fabricated colored Polydimethylsiloxane (PDMS) micropillars where the color enhances contrast making it easier to detect and track pillar displacement driven by the organism. Second, we developed a semiautomated graphical user interface to analyze the images for pillar displacement, thus reducing the analysis time for each animal to minutes. The addition of color reduced the Young's modulus of PDMS. Therefore, the dye-PDMS composite was characterized using Yeoh's hyperelastic model and the pillars were calibrated using a silicon based force sensor. We used our device to measure forces exerted by wild type and mutant Caenorhabditis elegans moving on an agarose surface. Wild type C. elegans exert an average force of similar to 1 mu N on an individual pillar and a total average force of similar to 7.68 mu N. We show that the middle of C. elegans exerts more force than its extremities. We find that C. elegans mutants with defective body wall muscles apply significantly lower force on individual pillars, while mutants defective in sensing externally applied mechanical forces still apply the same average force per pillar compared to wild type animals. Average forces applied per pillar are independent of the length, diameter, or cuticle stiffness of the animal. We also used the device to measure, for the first time, forces applied by Drosophila melanogaster larvae. Peristaltic waves occurred at 0.4Hz applying an average force of similar to 1.58 mu N on a single pillar. Our colored microfluidic device along with its displacement tracking software allows us to measure forces applied by multiple model organisms that crawl or slither to travel through their environment. (C) 2015 AIP Publishing LLC.
Resumo:
Simultaneous measurements of thickness and temperature profile of the lubricant film at chip-tool interface during machining have been studied in this experimental programme. Conventional techniques such as thermography can only provide temperature measurement under controlled environment in a laboratory and without the addition of lubricant. The present study builds on the capabilities of luminescent sensors in addition to direct image based observations of the chip-tool interface. A suite of experiments conducted using different types of sensors are reported in this paper, especially noteworthy are concomitant measures of thickness and temperature of the lubricant. (C) 2014 Elsevier Ltd.
Resumo:
The transformation of flowing liquids into rigid glasses is thought to involve increasingly cooperative relaxation dynamics as the temperature approaches that of the glass transition. However, the precise nature of this motion is unclear, and a complete understanding of vitrification thus remains elusive. Of the numerous theoretical perspectives(1-4) devised to explain the process, random first-order theory (RFOT; refs 2,5) is a well-developed thermodynamic approach, which predicts a change in the shape of relaxing regions as the temperature is lowered. However, the existence of an underlying `ideal' glass transition predicted by RFOT remains debatable, largely because the key microscopic predictions concerning the growth of amorphous order and the nature of dynamic correlations lack experimental verification. Here, using holographic optical tweezers, we freeze a wall of particles in a two-dimensional colloidal glass-forming liquid and provide direct evidence for growing amorphous order in the form of a static point-to-set length. We uncover the non-monotonic dependence of dynamic correlations on area fraction and show that this non-monotonicity follows directly from the change in morphology and internal structure of cooperatively rearranging regions(6,7). Our findings support RFOT and thereby constitute a crucial step in distinguishing between competing theories of glass formation.