270 resultados para Mixing.
Resumo:
Data on molar excess enthalpy on mixing at 298.15 K and 308.15 K, vapor-liquid equilibrium, latent heats of vaporization at 91.444 kPa and vapor pressures for the system toluene – 1, 1, 1-trichloroethane are presented. A simple adiabatic calorimeter designed for molar excess enthalpy measurements is described, tested and used. On présente, dans le cas du système toluène – 1, 1, 1-trichloréthane, des résultats relatifs aux grandeurs suivantes: a) enthalpie molaire d'excès à 298.15 K et 308.15 K; b) équilibre liquid-vapeur; c) chaleurs latentes de vaporisation à une pression absolue de 91.444 kP; d) pressions de vapeur. On décrit un calorimètre adiabatique simple, conçu pour mesurer l'enthalpie molaire d'excès, dont on a fait l'essai.
Resumo:
This paper presents the experimental data on vapor-liquid equilibrium and heats of mixing of mixtures of benzene with 1, e-dichloroethane, 1, l, 1 -trichloroethane, and lt1,2,2-tetrachloroethane.A literature survey revealed that the heats of mixing of benzene-l,2-dichloroethane have been studied and Table I shows the extent of study on this system.
Resumo:
A generalized two‐dimensional flow‐radiation coupled model to extract power from a gasdynamic laser is proposed. The model is used for the study of power extraction from a 9.4‐μm CO2 downstream‐mixing gasdynamic laser, where a cold CO2+H2 stream is mixed with a vibrationally excited N2 stream at the nozzle exits. This model is developed by coupling radiation with the two‐dimensional, unsteady, laminar and viscous flow modeling needed for such systems. The analysis showed that the steady‐state value of 9.4‐μm intensity as high as 5×107 W/m2 can be obtained from the system studied. The role of H2 relaxant in the power extraction process has also been investigated.
Resumo:
Novel epoxy resins of various thiocarbonohydrazones have been synthesized by reacting the aldehyde or ketone derivatives of thiocarbohydrazide with excess of epichlorohydrin. The resins have been characterized by elemental analyses, epoxy equivalents, 1H-NMR and IR spectra, thermal analyses, and viscosity measurements. Curing of the resins has been carried out by mixing with thiocarbohydrazide or ethylenediamine and heating at 80°C for 48 h. A comparison of the thermal stability of the cured resin samples has been made.
Resumo:
The activity of strontium in liquid Al-Sr alloys (X(Sr) less-than-or-equal-to 0.17) at 1323 K has been determined using the Knudsen effusion-mass loss technique. At higher concentrations (X(Sr) greater-than-or-equal-to 0.28), the activity of strontium has been determined by the pseudoisopiestic technique. Activity of aluminium has been derived by Gibbs-Duhem integration. The concentration - concentration structure factor of Bhatia and Thornton at zero wave vector has been computed from the thermodynamic data. The behaviour of the mean square thermal fluctuation in composition and the thermodynamic mixing functions suggest association tendencies in the liquid state. The associated solution model with Al2Sr as the predominant complex can account for the properties of the liquid alloy. Thermodynamic data for the intermetallic compunds in the Al-Sr system have been derived using the phase diagram and the Gibbs' energy and enthalpy of mixing of liquid alloys. The data indicate the need for redetermination of the phase diagram near the strontium-rich corner.
Resumo:
The model for spin-state transitions described by Bari and Sivardiere (1972) is static and can be solved exactly even when the dynamics of the lattice are included; the dynamic model does not, however, show any phase transition. A coupling between the octahedra, on the other hand, leads to a phase transition in the dynamical two-sublattice displacement model. A coupling of the spin states to the cube of the sublattice displacement leads to a first-order phase transition. The most reasonable model appears to be a two-phonon model in which an ion-cage mode mixes the spin states, while a breathing mode couples to the spin states without mixing. This model explains the non-zero population of high-spin states at low temperatures, temperature-dependent variations in the inverse susceptibility and the spin-state population ratio, as well as the structural phase transitions accompanying spin-state transitions found in some systems.
Resumo:
In the present study silver nanoparticles were rapidly synthesized at room temperature by treating silver ions with the Citrus limon (lemon) extract The effect of various process parameters like the reductant con centration mixing ratio of the reactants and the concentration of silver nitrate were studied in detail In the standardized process 10(-2) M silver nitrate solution was interacted for 411 with lemon Juice (2% citric acid concentration and 0 5% ascorbic acid concentration) in the ratio of 1 4(vol vol) The formation of silver nanoparticles was confirmed by Surface Plasmon Resonance as determined by UV-Visible spectra in the range of 400-500 nm X ray diffraction analysis revealed the distinctive facets (1 1 1 200 220 2 2 2 and 3 1 1 planes) of silver nanoparticles We found that citric acid was the principal reducing agent for the nanosynthesis process FT IR spectral studies demonstrated citric acid as the probable stabilizing agent Silver nanoparticles below 50 nm with spherical and spheroidal shape were observed from transmission electron microscopy The correlation between absorption maxima and particle sizes were derived for different UV-Visible absorption maxima (corresponding to different citric acid concentrations) employing MiePlot v 3 4 The theoretical particle size corresponding to 2% citric acid concentration was corn pared to those obtained by various experimental techniques like X ray diffraction analysis atomic force microscopy and transmission electron microscopy (C) 2010 Elsevier B V All rights reserved
Resumo:
Thermodynamic properties of three oxides of niobium have been measured using solid state electrochemical cells incorporating yttria-doped thoria (YDT) as the electrolyte in the temperature range T = (1000 to 1300) K. The standard Gibbs energies of formation of NbO, NbO2, and NbO2.422 from the elements can be expressed as: Delta(f)G(NbO)(o) +/- 547/J . mol(-1) = -414 986 + 86.861(T/K) Delta(f)G(NbO2)(o) +/- 548/J . mol(-1) = -779 864 + 164.438(T/K) Delta(f)G(NbO2.422)(o) +/- 775/J . mol(-1) = -911 045 + 197.932(T/K) The results are discussed in comparison with thermodynamic data reported in the literature. The new results refine data for NbO and NbO2 presented in standard data compilations. There are no data in thermodynamic compilations for NbO2.422 (Nb12O29). In the absence of the heat capacity and enthalpy of formation measurements, only the Gibbs energy of formation of NbO2.422 can be assessed. The free energy of formation of stoichiometric Nb2O5 is evaluated on the basis of measurements on NbO2.422 and information available in the literature on phase boundary compositions and isothermal variation of nonstoichiometric parameter with oxygen potential for Nb2O5-x. The results suggest a minor revision of data for Nb2O5. A minimum in the Gibbs energy of mixing for the system Nb-O occurs in the nonstoichiometric domain of Nb2O5-x with x = 0.036.
Resumo:
The radiative impact of aerosols is one of the largest sources of uncertainty in estimating anthropogenic climate perturbations. Here we have used independent ground-based radiometer measurements made simultaneously with comprehensive measurements of aerosol microphysical and optical properties at a highly populated urban site, Bangalore (13.02 degrees N, 77.6 degrees E) in southern India during a dedicated campaign during winter of 2004 and summer and pre-monsoon season of 2005. We have also used longer term measurements carried out at this site to present general features of aerosols over this region. The aerosol radiative impact assessments were made from direct measurements of ground reaching irradiance as well as by incorporating measured aerosol properties into a radiative transfer model. Large discrepancies were observed between measured and modeled (using radiative transfer models, which employed measured aerosol properties) radiative impacts. It appears that the presence of elevated aerosol layers and (or) inappropriate description of aerosol state of mixing are (is) responsible for the discrepancies. On a monthly scale reduction of surface irradiance due to the presence of aerosols (estimated using radiative flux measurements) varies from 30 to 65 W m(-2). The lowest values in surface radiative impact were observed during June when there is large reduction in aerosol as a consequence of monsoon rainfall. Large increase in aerosol-induced surface radiative impact was observed from winter to summer. Our investigations re-iterate the inadequacy of aerosol measurements at the surface alone and importance of representing column properties (using vertical profiles) accurately in order to assess aerosol-induced climate changes accurately. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
An integrodifferential formulation for the equation governing the Alfvén waves in inhomogeneous magnetic fields is shown to be similar to the polyvibrating equation of Mangeron. Exploiting this similarity, a time‐dependent solution for smooth initial conditions is constructed. The important feature of this solution is that it separates the parts giving the Alfvén wave oscillations of each layer of plasma and the interaction of these oscillations representing the phase mixing.
Resumo:
Raman induced phase conjugation (RIPC) spectroscopy is a relatively new coherent Raman spectroscopic (CRS) technique using optical phase conjugation (OPC), with which complete Raman spectra of transparent media can be obtained. It is a non-degenerate four-wave mixing technique in which two pulsed laser beams at Ω1 and Ω1 ± Δ where A corresponds to a vibrational frequency of a nonlinear medium mix with a third laser beam at Ω1 to generate a fourth beam Ω1 ± Δ, which is nearly phase conjugate to one of the beams at Ω1. With this technique one can measure the ratio of the resonant and nonresonant components of the third-order nonlinear susceptibilities of the nonlinear media. We have used this technique to get Raman spectra of well-known organic solvents like benzene etc., using pulsed Nd: YAG -dye laser systems. We have also studied the effect of delaying one of the interacting beams with respect to the others and the phase conjugate property of RIPC signals.
Resumo:
If the solar dynamo operates in a thin layer of 10,000-km thickness at the interface between the convection zone and the radiative core, using the facts that the dynamo should have a period of 22 years and a half-wavelength of 40 deg in the theta-direction, it is possible to impose restrictions on the values which various dynamo parameters are allowed to have. It is pointed out that the dynamo should be of alpha-sq omega nature, and kinematical calculations are presented for free dynamo waves and for dynamos in thin rectangular slabs with appropriate boundary conditions. An alpha-sq omega dynamo is expected to produce a significant poloidal field which does not leak to the solar surface. It is found that the turbulent diffusity eta and alpha-coefficient are restricted to values within about a factor of 10, the median values being eta of about 10 to the 10th sq cm/sec and alpha of about 10 cm/sec. On the basis of mixing length theory, it is pointed out that such values imply a reasonable turbulent velocity of the order 30 m/s, but rather small turbulent length scales like 300 km.
Resumo:
The nuclear Overhauser effect equations are solved analytically for a homonuclear group of spins whose sites are periodically arranged, including the special cases where the spins lie at the vertices of a regular polygon and on a one-dimensional lattice. t is shown that, for long correlation times, the equations governing magnetization transfer resemble a diffusion equation. Furthermore the deviation from exact diffusion is quantitatively related to the molecular tumbling correlation time. Equations are derived for the range of magnetization travel subsequent to the perturbation of a single spin in a lattice for both the case of strictly dipolar relaxation and the more general situation where additional T1 mechanisms may be active. The theory given places no restrictions on the delay (or mixing) times, and it includes all the spins in the system. Simulations are presented to confirm the theory.
Resumo:
The chemical potential of oxygen corresponding to the iron-rutile-ilmenite (IRI) and iron-ilmenite-ulvospinel (IIU) equilibria has been measured employing solid-state galvanic cells,$$Pt, Fe + TiO_2 + FeTiO_3 //(Y_2 O_3 ) ZrO_2 //Fe + FeO, Pt$$ and $${\text{Pt, Fe + FeTiO}}_{\text{3}} {\text{ + Fe}}_{\text{2}} {\text{TiO}}_{\text{4}} {\text{//(Y}}_{\text{2}} {\text{0}}_{\text{3}} {\text{) ZrO}}_{\text{2}} {\text{//Fe + FeO, Pt}}$$ in the temperature range of 875 to 1275 K and 900 to 1373 K, respectively. The cells are written such that the right-hand electrodes are positive. The electromotive force (emf) of both the cells was found to be reversible and to vary linearly with temperature over the entire range of measurement. The chemical potential of oxygen for IRI equilibrium is represented by Δμo2(IRI) = -550,724 - 29.445T + 20.374T InT(±210) J mol−1 (875 <-T<- 1184 K) = -620,260 + 369.593T - 27.716T lnT(±210) J mol−1 (1184 <-T<- 1275 K) and that for IIU equilibrium by Δμo2(IIU) = -501,800 - 49.035T + 20.374T lnT(±210) J mol−1 (900 <-T<- 1184 K) = -571,336 + 350.003T− 27.716T lnT(=−210) J mol-1 (1184 <-T<- 1373 K) The standard Gibbs energy changes for IRI and IIU equilibria have been deduced from the measured oxygen potentials. Since ilmenite contains small amounts of Ti³+ ions, a correction for the activity of FeTiO3 has been incorporated by assuming ideal mixing on each cation sublattice in the FeTiO3-Ti2O3 system. Similarly, the ulvospinel contains some Fe³+ ions and a correction for the activity of Fe2TiO4 has been included by modeling the Fe2TiO4-Fe3O4 system. The third-law analysis of the results obtained for IRI equilibrium gives ΔH 298 0 = -575 (±1.0) kJ mol-1 and for IIU equilibrium yields ΔH 298 0 = -523.7 (±0.7) kJ mol−1}. The present results suggest that Fe2+ and Ti4+ cations mix almost ideally on the octahedral site of spinel lattice in Fe2TiO4, giving rise to a configurational contribution of 2R In 2 (11.5256 J mol-1 K-1) to the entropy of Fe2TiO4.
Resumo:
A model incorporating the surface conductivity and morphology of the composite solid electrolytes is envisaged to explain their conduction behaviour. The conductivity data on LinX−50 m/o Al2O3 (X = F−, Cl−, Br−, CO32−, SO42−, PO43−) composites prepared by thermal decomposition of LinX·2nAl(OH)3·mH2O salts and Li2SO4−A (A=Al2O3, CeO2, Y2O3, Yb2O3, Zr2O3, ZrO2 and BaTiO3) composites prepared by mechanical mixing of the components are examined in the light of this model. It is surmised that the particle size of both the dispersoids and the hosts not only influence the ionic conductivity of the host matrix but also affect its bulk properties.