112 resultados para Minkowski Sum of Sets


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an analysis of the rate of sign changes in the discrete Fourier spectrum of a sequence. The sign changes of either the real or imaginary parts of the spectrum are considered, and the rate of sign changes is termed as the spectral zero-crossing rate (SZCR). We show that SZCR carries information pertaining to the locations of transients within the temporal observation window. We show duality with temporal zero-crossing rate analysis by expressing the spectrum of a signal as a sum of sinusoids with random phases. This extension leads to spectral-domain iterative filtering approaches to stabilize the spectral zero-crossing rate and to improve upon the location estimates. The localization properties are compared with group-delay-based localization metrics in a stylized signal setting well-known in speech processing literature. We show applications to epoch estimation in voiced speech signals using the SZCR on the integrated linear prediction residue. The performance of the SZCR-based epoch localization technique is competitive with the state-of-the-art epoch estimation techniques that are based on average pitch period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The von Neumann entropy of a generic quantum state is not unique unless the state can be uniquely decomposed as a sum of extremal or pure states. Therefore one reaches the remarkable possibility that there may be many entropies for a given state. We show that this happens if the GNS representation (of the algebra of observables in some quantum state) is reducible, and some representations in the decomposition occur with non-trivial degeneracy. This ambiguity in entropy, which can occur at zero temperature, can often be traced to a gauge symmetry emergent from the non-trivial topological character of the configuration space of the underlying system. We also establish the analogue of an H-theorem for this entropy by showing that its evolution is Markovian, determined by a stochastic matrix. After demonstrating this entropy ambiguity for the simple example of the algebra of 2 x 2 matrices, we argue that the degeneracies in the GNS representation can be interpreted as an emergent broken gauge symmetry, and play an important role in the analysis of emergent entropy due to non-Abelian anomalies. We work out the simplest situation with such non-Abelian symmetry, that of an ethylene molecule.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 3-Hitting Set problem involves a family of subsets F of size at most three over an universe U. The goal is to find a subset of U of the smallest possible size that intersects every set in F. The version of the problem with parity constraints asks for a subset S of size at most k that, in addition to being a hitting set, also satisfies certain parity constraints on the sizes of the intersections of S with each set in the family F. In particular, an odd (even) set is a hitting set that hits every set at either one or three (two) elements, and a perfect code is a hitting set that intersects every set at exactly one element. These questions are of fundamental interest in many contexts for general set systems. Just as for Hitting Set, we find these questions to be interesting for the case of families consisting of sets of size at most three. In this work, we initiate an algorithmic study of these problems in this special case, focusing on a parameterized analysis. We show, for each problem, efficient fixed-parameter tractable algorithms using search trees that are tailor-made to the constraints in question, and also polynomial kernels using sunflower-like arguments in a manner that accounts for equivalence under the additional parity constraints.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We find the sum of series of the form Sigma(infinity)(i=1) f(i)/i(r) for some special functions f. The above series is a generalization of the Riemann zeta function. In particular, we take f as some values of Hurwitz zeta functions, harmonic numbers, and combination of both. These generalize some of the results given in Mezo's paper (2013). We use multiple zeta theory to prove all results. The series sums we have obtained are in terms of Bernoulli numbers and powers of pi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change in response to a change in external forcing can be understood in terms of fast response to the imposed forcing and slow feedback associated with surface temperature change. Previous studies have investigated the characteristics of fast response and slow feedback for different forcing agents. Here we examine to what extent that fast response and slow feedback derived from time-mean results of climate model simulations can be used to infer total climate change. To achieve this goal, we develop a multivariate regression model of climate change, in which the change in a climate variable is represented by a linear combination of its sensitivity to CO2 forcing, solar forcing, and change in global mean surface temperature. We derive the parameters of the regression model using time-mean results from a set of HadCM3L climate model step-forcing simulations, and then use the regression model to emulate HadCM3L-simulated transient climate change. Our results show that the regression model emulates well HadCM3L-simulated temporal evolution and spatial distribution of climate change, including surface temperature, precipitation, runoff, soil moisture, cloudiness, and radiative fluxes under transient CO2 and/or solar forcing scenarios. Our findings suggest that temporal and spatial patterns of total change for the climate variables considered here can be represented well by the sum of fast response and slow feedback. Furthermore, by using a simple 1-D heat-diffusion climate model, we show that the temporal and spatial characteristics of climate change under transient forcing scenarios can be emulated well using information from step-forcing simulations alone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is known that all the vector bundles of the title can be obtained by holomorphic induction from representations of a certain parabolic group on finite-dimensional inner product spaces. The representations, and the induced bundles, have composition series with irreducible factors. We write down an equivariant constant coefficient differential operator that intertwines the bundle with the direct sum of its irreducible factors. As an application, we show that in the case of the closed unit ball in C-n all homogeneous n-tuples of Cowen-Douglas operators are similar to direct sums of certain basic n-tuples. (c) 2015 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We perceive objects as containing a variety of attributes: local features, relations between features, internal details, and global properties. But we know little about how they combine. Here, we report a remarkably simple additive rule that governs how these diverse object attributes combine in vision. The perceived dissimilarity between two objects was accurately explained as a sum of (a) spatially tuned local contour-matching processes modulated by part decomposition; (b) differences in internal details, such as texture; (c) differences in emergent attributes, such as symmetry; and (d) differences in global properties, such as orientation or overall configuration of parts. Our results elucidate an enduring question in object vision by showing that the whole object is not a sum of its parts but a sum of its many attributes.