110 resultados para Microwave anechoic chamber
Resumo:
Nanoscale ordering in a polymer blend structure is indispensable to obtain materials with tailored properties. It was established here that controlling the arrangement of nanoparticles, with different characteristics, in co-continuous PC/PVDF (polycarbonate/poly(vinylidene fluoride)) blends can result in outstanding microwave absorption (ca. 90%). An excellent reflection loss (RL) of ca. -71 dB was obtained for a model blend structure wherein the conducting (multiwall carbon nanotubes, MWNTs) and the magnetic inclusions (Fe3O4) are localized in PVDF and the dielectric inclusion (barium titanate, BT) is in PC. The MWNTs were modified using polyaniline, which facilitates better charge transport in the blends. Furthermore, by introducing surface active groups on BT nanoparticles and changing the macroscopic processing conditions, the localization of BT nanoparticles can be tailored, otherwise BT nanoparticles would localize in the preferred phase (PVDF). In this study, we have shown that by ordered arrangement of nanoparticles, the incoming EM radiation can be attenuated. For instance, when PANI-MWNTs were localized in PVDF, the shielding was mainly through reflection. Now by localizing the conducting inclusion and the magnetic lossy materials in PVDF and the dielectric materials in PC, an outstanding shielding effectiveness of ca. -37 dB was achieved where shielding was mainly through absorption (ca. 90%). Thus, this study clearly demonstrates that lightweight microwave absorbers can be designed using polymer blends as a tool.
Resumo:
In spite of intense research on ZnO over the past decade, the detailed investigation about the crystallographic texture of as obtained ZnO thin films/coatings, and its deviation with growth surface is scarce. We report a systematic study about the orientation distribution of nanostructured ZnO thin films fabricated by microwave irradiation with the variation of substrates and surfactants. The nanostructured films comprising of ZnO nanorods are grown on semiconductor substrates such as Si(100), Ge(100)], conducting substrates (ITO-coated glass, Cr coated Si), and polymer coated Si (PMMA/Si) to examine the respective development of crystallographic texture. The ZnO deposited on semiconductor substrates yieldsmixed texture, whereas c-axis oriented ZnO nanostructured films are obtained by conducting substrate, and PMMA coated Si substrates. Among all the surfactants, nanostructured film produced by using the lower molecular weight of polymeric surfactants (polyvinylpyrrolidone) shows a stronger (0002) texture, and that can be tuned to (10 - 10) by increasing the molecular weight of the surfactant. The strongest basal pole is achieved for the ZnO deposited on PMMA coated Si as substrate, and cetyl-trimethyl ammonium bromide as cationic surfactant. The texture analysis is carried out by X-ray pole figure analysis using the Schultz reflection method. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
A mutually miscible homopolymer (here polymethyl methacrylate; PMMA) was employed to tailor the interfacial properties of immiscible polycarbonate/styrene acrylonitrile (PC/SAN) blends. In order to design materials that can shield microwave radiation, one of the key properties i.e. electrical conductivity was targeted here using a conducting inclusion; multiwall carbon nanotubes (MWNTs). Owing to higher polarity, MWNTs prefer PC over SAN which though enhance the electrical conductivity of the blends, they don't improve the interfacial properties and results in poor mechanical properties. Hence, an efficient strategy has been adopted here to simultaneously enhance the mechanical, electrical and microwave attenuation properties. Herein, the MWNTs were wrapped by PMMA via in situ polymerization of MMA (methyl methacrylate). This strategy resulted in the migration of PMMA modified MWNTs towards the blend's interface and resulted in an effective stress transfer across the interface leading to improved mechanical and dynamic mechanical properties. Interestingly, the bulk electrical conductivity of the blends was also enhanced, manifesting the improved dispersion of the MWNTs. The state of dispersion of the MWNTs and the phase morphology were assessed using scanning electron microscopy. The microwave attenuation properties were evaluated using a vector network analyzer (VNA) in the X and K-u-band frequencies. The blends with PMMA wrapped MWNTs manifested a -21 dB of shielding effectiveness which suggests attenuation of more than 99% of the incoming microwave radiation. More interestingly, the attenuation constant could be tuned here employing this unique strategy. This study clearly opens a new tool box in designing materials that show improved mechanical, dynamic mechanical, electrical conductivity and microwave shielding properties.
Resumo:
Electrical conductivity and dielectric relaxation studies on SO4 (2-) doped modified molybdo-phosphate glasses have been carried out over a wide range of composition, temperature and frequency. The d.c. conductivities which have been measured by both digital electrometer (four-probe method) and impedance analyser are comparable. The relaxation phenomenon has been rationalized using electrical modulus formalism. The use of modulus representation in dielectric relaxation studies has inherent advantages viz., experimental errors arising from the contributions of electrode-electrolyte interface capacitances are minimized. The relaxation observed in the present study is non-Debye type. The activation energies for relaxation were determined using imaginary parts of electrical modulus peaks which were close to those of the d.c. conductivity implying the involvement of similar energy barriers in both the processes. The enhanced conductivity in these glasses can be attributed to the migration of Na+, in expanded structures due to the introduction of SO4 (2-) ions.