294 resultados para Meteoric fluids
Resumo:
Supercritical processes are gaining importance in the last few years in the food, environmental and pharmaceutical product processing. The design of any supercritical process needs accurate experimental data on solubilities of solids in the supercritical fluids (SCFs). The empirical equations are quite successful in correlating the solubilities of solid compounds in SCF both in the presence and absence of cosolvents. In this work, existing solvate complex models are discussed and a new set of empirical equations is proposed. These equations correlate the solubilities of solids in supercritical carbon dioxide (both in the presence and absence of cosolvents) as a function of temperature, density of supercritical carbon dioxide and the mole fraction of cosolvent. The accuracy of the proposed models was evaluated by correlating 15 binary and 18 ternary systems. The proposed models provided the best overall correlations. (C) 2009 Elsevier BA/. All rights reserved.
Resumo:
Using the linearized BGK model and the method of moments of half-range distribution functions the temperature jumps at two plates are determined, and it is found that the results are in fair agreement with those of Gross and Ziering, and Ziering.
Resumo:
The electron temperature structure in a weakly ionized plasma is studied allowing the degree of ionization to vary across the shock wave. The values of the electron temperature and the downstream equilibrium temperature obtained with variable ionization are less than those for frozen ionization. The electron temperature rises sharply behind the shock for variable ionization while a gradual increase is predicted by frozen ionization.
Resumo:
It is shown that there is a strict one-to-one correspondence between results obtained by the use of "restricted" variational principles and those obtained by a moment method of the Mott-Smith type for shock structure.
Resumo:
When a fluid with memory is injected into any flow region some assumptions regarding the initial state of stress have to be made in order to determine the state of stress at any subsequent instant. For a Maxwell fluid, it is assumed that the fluid near the surface of injection is suddenly stressed and responds by starting flow in accordance with the mechanical model chosen. The flow of a Maxwell fluid with a single relaxation time has been determined under the above assumption in the following two cases: (i) annulus between two porous concentric circular cylinders, and (ii) space between two porous and infinitely extending parallel plates. The nature of flow in the present case is similar to that of the Reiner-Rivlin fluids obtained by Narasimhan2).
Resumo:
The flow generated by the rotation of a sphere in an infinitely extending fluid has recently been studied by Goldshtik. The corresponding problem for non-Newtonian Reiner-Rivlin fluids has been studied by Datta. Bhatnagar and Rajeswari have studied the secondary flow between two concentric spheres rotating about an axis in the non-Newtonian fluids. This last investigation was further generalised by Rajeswari to include the effects of small radial suction or injection. In Part A of the present investigation, we have studied the secondary flow generated by the slow rotation of a single sphere in non-Newtonian fluid obeying the Rivlin-Ericksen constitutive equation. In Part B, the effects of small suction or injection have been studied which is applied in an arbitrary direction at the surface of the sphere. In the absence of suction or injection, the secondary flow for small values of the visco-elastic parameter is similar to that of Newtonian fluids with inclusion of inertia terms in the Oseen approximation. If this parameter exceeds Kc = 18R/219, whereR is the Reynolds number, the breaking of the flow field takes place into two domains, in one of which the stream lines form closed loops. For still higher values of this parameter, the complete reversal of the sense of the flow takes place. When suction or injection is included, the breaking of the flow persists under certain condition investigated in this paper. When this condition is broken, the breaking of the flow is obliterated.
Resumo:
Bhatnagar and Rathna (Quar. Journ. Mech. Appl. Maths., 1963,16, 329) investigated the flows of Newtonian, Reiner-Rivlin and Rivlin-Ericksen fluids between two rotating coaxial cones. In case of the last two types of fluids, they predicted the breaking of secondary flow field in any meridian plane. We find that such breaking is avoided by the application of a sufficiently strong azimuthal magnetic field arising from a line current along the axis of the cones.
Resumo:
This paper is devoted to a consideration of the following problem: A spherical mass of fluid of density varrho1, viscosity μ1 and external radius R is surrounded by a fluid of density varrho2 and viscosity μ2.The fluids are immiscible and incompressible. The interface is accelerated radially by g1: to study the effect of viscosity and surface tension on the stability of the interface. By analyzing the problem in spherical harmonics the mathematical problem is reduced to one of solution of the characteristic determinant equation. The particular case of a cavity bubble, where the viscosity μ1 of the fluid inside the bubble is negligible in comparison with the viscosity μ2 of the fluid outside the bubble, is considered in some detail. It is shown that viscosity has a stabilizing role on the interface; and when g1 > T(n − 1) (n + 2)/R2(varrho2 − varrho1) the stabilizing role of both viscosity and surface tension is more pronounced than would result when either of them is taken individually.
Resumo:
Following the method due to Bhatnagar (P. L.) [Jour. Ind. Inst. Sic., 1968, 1, 50, 1], we have discussed in this paper the problem of suction and injection and that of heat transfer for a viscous, incompressible fluid through a porous pipe of uniform circular cross-section, the wall of the pipe being maintained at constant temperature. The method utilises some important properties of differential equations and some transformations that enable the solution of the two-point boundary value and eigenvalue problems without using trial and error method. In fact, each integration provides us with a solution for a suction parameter and a Reynolds number without imposing the conditions of smallness on them. Investigations on non-Newtonian fluids and on other bounding geometries will be published elsewhere.
Resumo:
The propagation of a shock wave, originating in a stellar interior, is considered when it approaches the surface of the star and assumes a self-similar character, "forgetting" its initial conditions. The flow behind the shock is assumed to be spatially isothermal rather than adiabatic to simulate the conditions of large radiative transfer near the stellar surface. The adiabatic and isothermal flows behind such a shock are compared. The exact shock-propagation laws, obtained by solving the equations in similarity variables, for different values of the parameter δ in the undisturbed density law, ρ0 ∝ xδ, and γ, the ratio of specific heats, are compared with the approximate values calculated by Whitham's characteristic rule and the two show a generally good agreement.