582 resultados para Materials science.
Resumo:
The hot deformation behaviour of Mg–3Al alloy has been studied using the processing-map technique. Compression tests were conducted in the temperature range 250–550 °C and strain rate range 3 × 10−4 to 102 s−1 and the flow stress data obtained from the tests were used to develop the processing map. The various domains in the map corresponding to different dissipative characteristics have been identified as follows: (i) grain boundary sliding (GBS) domain accommodated by slip controlled by grain boundary diffusion at slow strain-rates (<10−3 s−1) in the temperature range from 350 to 450 °C, (ii) two different dynamic recrystallization (DRX) domains with a peak efficiency of 42% at 550 °C/10−1 s−1 and 425 °C/102 s−1 governed by stress-assisted cross-slip and thermally activated climb as the respective rate controlling mechanisms and (iii) dynamic recovery (DRV) domain below 300 °C in the intermediate strain rate range from 3 × 10−2 to 3 × 10−1 s−1. The regimes of flow instability have also been delineated in the processing map using an instability criterion. Adiabatic shear banding at higher strain rates (>101 s−1) and solute drag by substitutional Al atoms at intermediate strain rates (3 × 10−2 to 3 × 10−1 s−1) in the temperature range (350–450 °C) are responsible for flow instability. The relevance of these mechanisms with reference to hot working practice of the material has been indicated. The processing maps of Mg–3Al alloy and as-cast Mg have been compared qualitatively to elucidate the effect of alloying with aluminum on the deformation behaviour of magnesium.
Resumo:
Phase relations in the system Ca-Ti-O have been established by equilibration of several samples at 1200 K for prolonged periods and identification of phases in quenched samples by optical and scanning electron microscopy, XRD and EDS. Samples representing 20 compositions in the ternary system were analyzed. There was negligible solid solubility of Ca in the phases along the binary Ti-O, and of Ti in CaO. Four ternary oxides were identified: CaTiO3, Ca4Ti3O10 and Ca3Ti2O7 containing tetravalent titanium, and CaTi2O4 containing trivalent titanium. Tie-lines link calcium titanite (CaTi2O4) with the three calcium titanates (CaTiO3, Ca4Ti3O10 and Ca3Ti2O7), CaO, oxygen excess TiO1+delta and stoichiometric TiO. Tie-lines connect CaTiO3 with TiO2-x, Magneli phases TinO2n-1 (28 >= n >= 4), Ti3O5, Ti2O3 and TiO1+delta. CaO was found to coexist with TiO, and Ti-O solid solutions alpha and beta. The phase diagram is useful for understanding the mechanisms and kinetics of direct calciothermic reduction of TiO2 to metal and electrochemical reduction of TiO2 using graphite anode and molten CaCl2 electrolyte.
Resumo:
A conventional magnesium alloy, AZ91D, and two creep resistant magnesium alloys, developed for powertrain applications, MRI 153M and MRI 230D, are prepared by high pressure die casting. These alloys are tested for their creep behaviour in the continuous manner, as is the Current practice, and in the interrupted manner, which represents the real life Situation more closely. It is observed that the interrupted creep tests give rise to a primary creep appearing at the beginning of each cycle resulting in a higher average strain rate than that encountered in the continuous creep tests. Further, the shorter the cycle time, higher is the average strain rate in the interrupted creep tests. A higher average strain rate will give rise to a higher strain over the same period. This is attributed to the recovery taking place during the cooling and heating between two cycles. The effect of additional precipitation during interrupted creep tests depends on the nature of the precipitates. The additional precipitation of beta phase during the cooling and heating between two cycles increases the steady state strain rate in the AZ91D and MRI 153M alloys. whereas the additional precipitation of C36 phase during the cooling and heating between two cycles decreases the steady state strain rate in the MRI 230D alloy. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The compositional, structural, microstructural, dc electrical conductivity and optical properties of undoped zinc oxide films prepared by the sol-gel process using a spin-coating technique were investigated. The ZnO films were obtained by 5 cycle spin-coated and dried zinc oxide films followed by annealing in air at 600 A degrees C. The films deposited on the platinum coated silicon substrate were crystallized in a hexagonal wurtzite form. The energy-dispersive X-ray (EDX) spectrometry shows Zn and O elements in the products with an approximate molar ratio. TEM image of ZnO thin film shows that a grain of about 60-80 nm in size is really an aggregate of many small crystallites of around 10-20 nm. Electron diffraction pattern shows that the ZnO films exhibited hexagonal structure. The SEM micrograph showed that the films consist in nanocrystalline grains randomly distributed with voids in different regions. The dc conductivity found in the range of 10(-5)-10(-6) (Omega cm)(-1). The optical study showed that the spectra for all samples give the transparency in the visible range.
Resumo:
Hollow Microspheres of hydroxyapatite-polymer composite can be used as carriers in drug delivery and fillers in tissue engineering. Based on the concept of soft chemistry, a battery of technique is available in the literature to synthesize hollow microspheres, however, an economically viable synthesis route, having good control over the microarchitect and easy to be scaled up, is yet to be developed. Polymer matrix mediated synthesis of inorganic nanoparticles is known to synthesize nanoparticles with controlled morphology and dimensions. It is termed as biomimetic synthesis. Integrating the biomimetic synthesis of nano-particles and spray drying techniques, a novel process of producing hydroxyapatite-polymer composite hollow microspheres is briefly discussed here.
Resumo:
Carbon nanofibers of 50–500 nm diameter and several micrometer length were synthesized by high-temperature pyrolysis of dihydro-2,5-furandione (C4H4O3) in the temperature range of 600–980 °C. The formation of both graphitic and non-graphitic structured carbon fibers was observed in high-resolution transmission electron microscope. The Raman spectra of the samples showed the presence of both the D and G bands of varying intensity and sharpness. The low-temperature electrical transport studies on the samples have shown interesting metal–insulator transitions. The films showed variable range hopping conduction in the insulating regime and power law behavior in the critical regime at low temperatures.
Resumo:
Bismuth vanadate (Bi2VO5.5, BVO) thin films have been deposited by a pulsed laser ablation technique on platinized silicon substrates. The surface morphology of the BVO thin films has been studied by atomic force microscopy (AFM). The optical properties of the BVO thin films were investigated using spectroscopic ellipsometric measurements in the 300–820 nm wavelength range. The refractive index (n), extinction coefficient (k) and thickness of the BVO thin films have been obtained by fitting the ellipsometric experimental data in a four-phase model (air/BVOrough/BVO/Pt). The values of the optical constants n and k that were determined through multilayer analysis at 600 nm were 2.31 and 0.056, respectively. For fitting the ellipsometric data and to interpret the optical constants, the unknown dielectric function of the BVO films was constructed using a Lorentz model. The roughness of the films was modeled in the Brugmann effective medium approximation and the results were compared with the AFM observations.
Resumo:
Nanocrystalline Zn1-xMnxS films (x=0.04, 0.08 and 0.12) were deposited on glass substrates at 400 K using a simple resistive thermal evaporation technique. All the deposited films were characterized by chemical, structural, morphological, optical and magnetic properties. Scanning electron microscopy and atomic force microscopy studies showed that all the films investigated were in nanocrystalline form with the grain size lying in the range 10–20 nm. All the films exhibited cubic structure and the lattice parameters increase linearly with composition. The absorption edge shifted from the higher-wavelength region to lower wavelengths with increase in Mn concentration. The magnetization increased sharply with increase of the Mn content up to x=0.08 and then decreased with further increase of the Mn content. Particularly, Zn0.92Mn0.08S concentration samples show a weak ferromagnetic nature, which might be the optimum concentration for optoelectronic and spintronic device applications.
Resumo:
Nickel rich NiTi films were sputter deposited on p-doped Si left angle bracket1 0 0right-pointing angle bracket substrates maintained at 300 °C. The films were subsequently solution treated at 700 °C for 30 min followed by ageing at 400 and 500 °C for 5 h. The microstructure of the films was examined by TEM and these studies revealed that the NiTi films were mostly amorphous in the as-deposited condition. The subsequent solution treatment and ageing resulted in crystallization of the films with the film aged at 400 °C exhibiting nanocrystalline grains and three phases viz. B2 (austenite), R and Ni3Ti2 whereas the film aged at 500 °C shows micron sized grains and two phases viz. R and Ni3Ti2. Nanoindentation studies revealed that the nature of the load versus indentation depth response for the films aged at 400 and 500 °C was different. For the same load, the indenter penetrated to a much greater depth for the film aged at 400 °C as compared to the film aged at 500 °C. Also the ratio of the residual indentation depth (hf) to maximum indentation depth (hmax) is lower for the film aged at 400 °C as compared to the film aged at 500 °C. This was attributed to the occurrence of stress induced martensitic transformation of the B2 phase present in the film aged at 400 °C during indentation loading which results in a transformation strain in addition to the normal elastic and plastic strains and its subsequent recovery on unloading. The hardness and elastic modulus measured using the Oliver and Pharr analysis was also found to be lower for the film aged at 400 °C as compared to the film aged at 500 °C which was also primarily attributed to the same effect.
Resumo:
Although Pb(Zr1-XTiX)O-3 solid solution is the cornerstone of the piezoelectric ceramics, there is no information in the literature on thermodynamic activities of the component phases in the solid solution. Using inter-crystalline ion exchange equilibria between Pb(Zr1-XTiX)O-3 solid solution with cubic perovskite structure and (Zr1-YTiY)O-2 solid solutions with monoclinic and tetragonal structures, activities of PbTiO3 and PbZrO3 in the perovskite solid solution have been derived at 1373 K using the modified Gibbs-Duhem integration technique of Jacob and Jeffes. Tie-lines from the cubic solid solution are skewed towards the ZrO2 corner. Activities in the zirconia-rich (Zr1-YTiY)02 solid solutions are taken from a recent emf study. The results for the perovskite solid solution at 1373 K can be represented by a sub-regular solution model: Delta G(E.M) (J mol(-1)) = X-PbTiO3 X-PbZrO3(5280X(PbTiO3) - 1980X(PbZrO3)) where Delta G(E.M) is the excess Gibbs energy of mixing of the cubic solid solution and Xi represents the mole fraction of component i. There is a significant positive deviation from ideality for PbTiO3-rich compositions and mild negative deviation near the PbZrO3 corner. The cubic solid solution is intrinsically stable against composition fluctuations at temperatures down to 840 K. The results contrast sharply with the recent calorimetric data on enthalpy of mixing which signal instability of the cubic perovskite solid solution. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Carbon nanotubes (CNTs) were discovered by Iijima in 1991 as the fourth form of carbon. Carbon nanotubes are the ultimate form of the carbon fibre because of its high Young's modulus in the order of 1 TPa, which is very useful for load transfer in nanocomposites. In the present work, CNT/Cu nanocomposites were fabricated by the powder metallurgy technique, and after extrusion of the nanocomposites, bright field transmission electron microscopic studies were carried out. From the transmission electron microscopic images obtained, a novel method of ascertaining the Young's modulus of multiwalled CNTs is worked out in the present paper, which turns out to be 0.94 TPa, which is consistent with experimental results. Furthermore, an attempt is made to investigate the microhardness of copper by reinforcing it with multiwalled CNTs. There is an increase in hardness by twofold in CNT/Cu nanocomposites as compared to pure Cu matrix. This is due to high relative density, even distribution of CNTs and proper bonding at CNT/Cu interfaces.
Resumo:
La0.5Li0.5TiO3 perovskite was synthesized by various wet chemical methods. By adopting low temperature methods of preparation lithium loss from the material is prevented. La0.5Li0.5TiO3 (LLTO) was formed with cubic symmetry at 1473 K. LLTO was formed at relatively lower temperature by using hydrothermal preparation method. PVA gel-decomposition route yield tetragonal LLTO on annealing the dried gel at 1473 K. By using gel-carbonate route LiTi2O4 minor phase was found to remain even after heat-treatment at 1473 K. The hydroxylation of LLTO was done in deionized water as well as in dilute acetic acid medium. By hydroxylation process incorporation of hydroxyls and leaching out of Li+ was observed from the material. The Li+ concentration of these compositions was examined by AAS. The electrical conductivities of these compositions were measured by dc and ac impedance techniques at elevated temperatures. The activation energies of electrical conduction for these compositions were estimated from the experimental results. The measured activation energy of Li+ conduction is 0.34 eV. Unhydroxylated samples exhibit only Li+ conduction, whereas, the hydroxylated LLTO show proton conductivity at 298-550 K in addition to Li+ conductivity. The effect of Zr or Ce substitution in place of Ti were attempted. La0.5Li0.5ZrO3 Perovskite was not formed; instead pyrochlore phase (La2Zr2O7) along with monoclinic ZrO2 phases was observed above 1173 K; below 1173 K cubic ZrO2 is stable. (La0.5Li0.5)(2)CeO4 solid solution was formed in the case of Ce substitution at Ti sublattice on heat-treatment up to 1673 K. (c) 2005 Springer Science + Business Media, Inc.
Resumo:
Nanocrystalline hydroxyapatite (HAp) exhibits better bioactivity and biocompatibility with enhanced mechanical properties compared to the microcrystalline counterpart. In the present work, nanocrystalline hydroxyapatite was synthesized by wet chemical method. Sintering was carried out with nanocrystalline alumina as additive, the content of alumina being varied from 10 to 30 wt% in the composite. For 20 and 30 wt % Al2O3, hydroxyapatite decomposed into tricalcium phosphate (TCP) above the sintering temperature of 1100 degrees C. The fracture toughness of nano HAp-nano Al2O3 composite is anisotropic in nature and reached a maximum value of 6.9 MPa m(1/2).
Resumo:
The dislocation mechanisms for plastic flow in quenched AlMg alloys with 0.45, 0.9, 2.7 and 6.4 at. % Mg were investigated using tensile tests and change-in-stress creep experiments in the temperaturhttp://eprints.iisc.ernet.in/cgi/users/home?screen=EPrint::Edit&eprintid=28109&stage=core#te range 87° -473° K. The higher the magnesium content in the alloy, the higher was the temperature dependence of flow stress. The alloys showed no perceptible creep in the vicinity of room temperature, while they crept at lower as well as higher temperatures. The most probable cause of hardening at temperatures below ∼ 200° K was found to be the pinning of dislocations by randomly distributed solute atoms, while athermal locking of dislocations by dynamic strain ageing during creep was responsible for the negligibly small creep rate in the room temperature range.
Resumo:
A quantitative structural investigation was carried out on (1-y)PbZrxTi1-xO3-yPbZn(1/3)Nb(2/3)O(3) where y=0.1 and 0.2 ((1-y)PZT-yPZN). High resolution XRD data have been used for quantitative phase analysis. The nominal compositions were prepared by a two-step low temperature calcining solid-state method. The sintered samples show an average grain size of 1-2 mu m. It is demonstrated that the increase in the concentration of PZN leads to the shift of the morphotropic phase boundary (MPB) of PZT towards the PbZrO3 end member. In the present work, an effort has been made to quantitatively determine the MPB phase contents and to regain the coexistence of tetragonal and monoclinic phases by varying the value of x(i.e. Zr/Ti ratio). The width of the MPB becomes considerably larger for y=0.10 and 0.20 as compared to pure PZT. This is attributed to the considerably lower grain size of our samples resulting from the adopted preparation method. (C) 2010 Elsevier B.V. All rights reserved.