235 resultados para MECHANICAL ALLOYING


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ionic polymer-metal composites (IPMC), piezoelectric polymer composites and nematic elastomer composites are materials, which exhibit characteristics of both sensors and actuators. Large deformation and curvature are observed in these systems when electric potential is applied. Effects of geometric non-linearity due to the chargeinduced motion in these materials are poorly understood. In this paper, a coupled model for understanding the behavior of an ionic polymer beam undergoing large deformation and large curvature is presented. Maxwell's equations and charge transport equations are considered which couple the distribution of the ion concentration and the pressure gradient along length of a cantilever beam with interdigital electrodes. A nonlinear constitutive model is derived accounting for the visco-elasto-plastic behavior of these polymers and based on the hypothesis that the presence of electrical charge stretches/contracts bonds, which give rise to electrical field dependent softening/hardening. Polymer chain orientation in statistical sense plays a role on such softening or hardening. Elementary beam kinematics with large curvature is considered. A model for understanding the deformation due to electrostatic repulsion between asymmetrical charge distributions across the cross-sections is presented. Experimental evidence that Silver(Ag) nanoparticle coated IPMCs can be used for energy harvesting is reported. An IPMC strip is vibrated in different environments and the electric power against a resistive load is measured. The electrical power generated was observed to vary with the environment with maximum power being generated when the strip is in wet state. IPMC based energy harvesting systems have potential applications in tidal wave energy harvesting, residual environmental energy harvesting to power MEMS and NEMS devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automated synthesis of mechanical designs is an important step towards the development of an intelligent CAD system. Research into methods for supporting conceptual design using automated synthesis has attracted much attention in the past decades. The research work presented here is based on the processes of synthesizing multiple state mechanical devices carried out individually by ten engineering designers. The designers are asked to think aloud, while carrying out the synthesis. The ten design synthesis processes are video recorded, and the records are transcribed and coded for identifying activities occurring in the synthesis processes, as well as for identifying the inputs to and outputs from the activities. A mathematical representation for specifying multi-state design task is proposed. Further, a descriptive model capturing all the ten synthesis processes is developed and presented in this paper. This will be used to identify the outstanding issues to be resolved before a system for supporting design synthesis of multiple state mechanical devices that is capable of creating a comprehensive variety of solution alternatives could be developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the formation of a stable Body-Centered Heptahedral (BCH) crystalline nanobridge structure of diameter ~ 1nm under high strain rate tensile loading to a <100> Cu nanowire. Extensive Molecular Dynamics (MD) simulations are performed. Six different cross-sectional dimensions of Cu nanowires are analyzed, i.e. 0.3615 x 0.3615 nm2, 0.723 x 0.723 nm2, 1.0845 x 1.0845 nm2, 1.446 x 1.446 nm2, 1.8075 x 1.8075 nm2, and 2.169 x 2.169 nm2. The strain rates used in the present simulations are 1 x 109 s-1, 1 x 108 s-1, and 1 x 107 s-1. We have shown that the length of the nanobridge can be characterized by larger plastic strain. A large plastic deformation is an indication that the structure is highly stable. The BCH nanobridge structure also shows enhanced mechanical properties such as higher fracture toughness and higher failure strain. The effect of temperature, strain rate and size of the nanowire on the formation of BCH structure is also explained in details. We also show that the initial orientation of the nanowires play an important role on the formation of BCH crystalline structure. Results indicate that proper tailoring of temperature and strain rate during processing or in the device can lead to very long BCH nanobridge structure of Cu with enhanced mechanical properties, which may find potential application for nano-scale electronic circuits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of 4.0 MeV proton irradiation on the microstructure and mechanical properties of nanocrystalline (nc) nickel was investigated. The irradiation damage induced in the sample was of the order of 0.004 dpa. Transmission electron microscopy of irradiated samples indicated the presence of dislocation loops within the grains. An increase in hardness and strain-rate sensitivity (m) of nc-Ni with irradiation was noted. The rate-controlling deformation mechanism in irradiated nc-Ni was identified to be interaction of dislocations with irradiation-induced defects. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of polymer grafting on the phase behavior and elastic properties of two tail lipid bilayers have been investigated using dissipative particle dynamics simulations. For the range of polymer lengths studied, the L(c) to L(alpha) transition temperature is not significantly affected for grafting fractions, G(f) between 0.16 and 0.25. A decrease in the transition temperature is observed at a relatively high grafting fraction, G(f) = 0.36. At low temperatures, a small increase in the area per head group, a(h), at high G(f) leads to an increase in the chain tilt, inducing order in the bilayer and the solvent. The onset of the phase transition occurs with the nucleation of small patches of thinned membrane which grow and form continuous domains as the temperature increases. This region is the co-existence region between the L(beta)(thick) and the L(alpha)(thin) phases. The simulation results for the membrane area expansion as a function of the grafting density conform extremely well to the scalings predicted by self-consistent mean field theories. We find that the bending modulus shows a small decrease for short polymers (number of beads, N(p) = 10) and low G(f), where the influence of polymer is reduced when compared to the effect of the increased a(h). For longer polymers (N(p) > 15), the bending modulus increases monotonically with increase in grafted polymer. Using the results from mean field theory, we partition the contributions to the bending modulus from the membrane and the polymer and show that the dominant contribution to the increased bending modulus arises from the grafted polymer. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3631940]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we report a significant improvement in mechanical properties of near eutectic Nb-Si alloys by addition of Gallium (Ga) and control of microstructural length scale. A comparative study of two alloys Nb-18.79 at.%Si and Nb-20.2 at.%Si-2.7 at.%Ga were carried out. The microstructure refinements were carried out by vacuum suction casting in water cooled thick copper mold. It is shown that addition of Ga suppresses Nb(3)Si phase and promotes beta-Nb(5)Si(3) phase. The microstructural length scale and in particular eutectic spacing reduces significantly to 50-100 nm in suction cast ternary alloys. Compression test shows a strength of 2.8 +/- 0.1 GPa and plasticity of 4.3 +/- 0.03%. In comparison, the binary Nb-18.79 at.%Si alloy processed under identical conditions exhibit coarser length scale (300-400 nm) and brittle behavior. The fracture toughness of Ga containing suction cast alloy shows a value of 24.11 +/- 0.5 MPa root m representing a major improvement for bulk Nb-Si eutectic alloy. (C) 2011 Elsevier Ltd. All rights reserved.