266 resultados para MANGANESE(II) COMPLEXES


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mononuclear copper(II) complexes of tri- and tetra-dentate tripodal ligands containing phenolic hydroxyl and benzimidazole or pyridine groups have been isolated. They are of the type (CuL(X)].nH2O, [CuL(H2O)]X.nH2O or [CuL].nH2O where X = Cl-, ClO4-, N3- or NCS- and n = 0-4. The electronic spectra of all the complexes exhibit a broad absorption band around 14000 cm-1 and the polycrystalline as well as the frozen-solution EPR spectra are axial, indicating square-based geometries. The crystal structure of [CuL(Cl)] [HL = (2-hydroxy-5-nitrobenzyl)bis(2-pyridyl-methyl)amine] revealed a square-pyramidal geometry around Cu(II). The mononuclear complex crystallises in the triclinic space group P1BAR with a = 6.938(1), b = 11.782(6), c = 12.678(3) angstrom and alpha = 114.56(3), beta = 92.70(2), gamma = 95.36(2)-degrees. The co-ordination plane is comprised of one tertiary amine and two pyridine nitrogens and a chloride ion. The phenolate ion unusually occupies the axial site, possibly due to the electron-withdrawing p-nitro group. The enhanced pi delocalisation involving the p-nitrophenolate donor elevates the E1/2 values. The spectral and electrochemical results suggest the order of donor strength as nitrophenolate < pyridine < benzimidazole in the tridentate and nitrophenolate < benzimidazole < pyridine in the tetradentate ligand complexes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Time-resolved fluorescence studies were carried out on a series of free-base and zinc(II) derivatives of meso-tetraphenylporphyrins covalently linked to either 1,3-dinitrobenzene (DNB) or 1,3,5-trinitrobenzene (TNB) acceptor units. These acceptor units were linked at different sites (at the ortho, meta or para positions of one of the phenyl groups of meso-tetraphenylporphyrin) to the donor porphyrins such that the resulting isomeric intramolecular donor-acceptor complexes exhibit different centre-to-centre (ctc) distances and relative orientations. Biexponential fluorescence decay profiles observed for several of these covalently linked complexes were rationalized in terms of the presence of ''closed'' and ''extended'' conformers. Detailed analyses of the fluorescence decay data have provided a comprehensive understanding of the photoinduced electron transfer (PET) reactions occurring in systems containing zinc(II) porphyrin donors. It is observed that although DNB-linked zinc(II) complexes follow the trends predicted for the efficiency of PET with respect to donor-acceptor distance, the TNB-linked zinc(II) porphyrins exhibit a behaviour which is dictated by steric effects. Similarly, although the thermodynamic criteria predict a greater efficiency of charge separation in TNB-linked complexes compared with DNB-linked complexes, the reverse trend observed has been attributed to orientational effects. In the complexes containing free-base porphyrin donors, PET is expected to be less efficient from a thermodynamic viewpoint. In a few of these cases, fluorescence quenching seems to occur by parallel mechanisms other than PET.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two intercalatable Co-II-complexes of anthryl or anthraquinone attached bispicolylamine derivatives cleave plasmid pTZ19R DNA spontaneously upon exposure to visible light under ambient conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Lanthanide(II) complexes La(B)(acac)(3)] (1-3) and Gd(B)(acac)(3)] (4-6), where B is a N,N-donor phenanthroline base, viz., 1,10-phenanthroline (phen in 1, 4), dipyrido3,2-d:2',3'-f]quinoxaline (dpq in 2, 5) and dipyrido3,2-a:2',3'-c]phenazine (dppz in 3, 6), have been prepared and characterized. The Gd(111) complexes 4 6 are structurally characterized by single crystal X-ray crystallography. The complexes display GdO6N2 coordination with the ligands showing bidentate chelating mode of bonding. The complexes are non-electrolytic in aqueous DMF and exhibit ligand-centered absorption bands in the UV region. The dppz complexes show a band at 380 nm in DMF. The La(111) complexes are diamagnetic. The Gd(III) complexes are paramagnetic with magnetic moment that corresponds to seven unpaired electrons. The Complexes are avid binders to calf thymus DNA giving K-b values in the range of 4.7 x 10(4) 6.1 x 10(5) M-1 with a relative binding order: 3, 6 (dppz) > 2, 5 (dpq) > 1, 4 (phen). The binding data suggest DNA surface and/or groove binding nature of the complexes. The dpq and dppz complexes efficiently cleave SC DNA to its nicked circular form in UV-A light of 365 nm via formation of both singlet oxygen (O-1(2)) and hydroxyl radical (HO center dot) species. The dppz complexes 3 and 6 exhibit significant PDT effect in He La cervical cancer cells giving respective IC50 value of 460(+/- 50) and 530(+/- 30) nM in UV-A light of 365 rim, and are essentially non-toxic in dark with an IC50 value of >100 mu M. The dppz ligand alone is cytotoxic in dark and UV-A light. A significant decrease in the dark toxicity of the dppz base is observed on binding to the Ln(III) ion while retaining its photocytotoxicity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The 1:1 and 1:2 cooper(II) complexes with the tridentate compound bis(benzimidazol-2-ylmethyl)amine (L(1)) and its benzimidazole (L(2)) and amine (L(3)) N-methyl-substituted derivatives have been prepared and their spectroscopic properties studied. While the 1:1 complexes are of the type CuLX(2) nH(2)O (X = C/O-4(-), NO3-, Cl- or Br-), the 1:2 complexes are of the type CuL(2) (ClO4)(2) nH(2)O (L = L(1) or L(3), n = 0-4). In all these complexes L acts as a tridentate ligand with the amine nitrogen and both the benzimidazole nitrogens co-ordinating to Cu-II. The complex [CuL(2)(1)][ClO4](2) 2H(2)O crystallises in the monoclinic space group P2(1)/c with a = 9.828(2), b = 9.546(2) and c = 19.906(2) Angstrom and beta = 95.71(1)degrees, for Z = 2. The R value is 0.0635 for 2180 significant reflections. The copper(II) ion has an elongated octahedral geometry with four equatorial benzimidazole and two long-distance axial amine N donors. The Cu-N-bzim and Cu-N-amine distances are 2.011(4) and 2.597(6) Angstrom respectively. Factors favouring facial co-ordination to tridentate ligands are discussed. The 1:1 complexes involve meridonal co-ordination of the ligands, with square-based geometry as revealed by ligand-field and EPR spectral properties. The NMe substitution as in CuL(3)(ClO4)(2) confers low V ($) over tilde$$(max) and high E(1/2) for the cu(II)-Cu-I couple. Most of the 1:1 complexes are less reversible but exhibit E(1/2) values more positive than those of the corresponding 1:2 complexes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Asymmetrically dibridged dicopper(II) complexes, [Cu-2(OH)(O2CC6H4-p-Me)(tmen)(2)(H2O)](ClO4)(2) (1) and [Cu-2(OH)(O2CC6H4-p-OMe)(tmen)(2)(H2O)](ClO4)(2) (2) (tmen = N,N,N',N'-tetramethylethane-1,2-diamine), were prepared and structurally characterized. Complex 1 crystallizes in the monoclinic space group P2(1)/a with a = 17.718(2), b = 9.869(1), c = 19.677(2) Angstrom, beta = 115.16(1)degrees, V = 3114.3(6) Angstrom(3) and Z = 4. The structure was refined to R(wR(2)) = 0.067(0.178). Complex 2 crystallizes in the monoclinic space group P2(1)/a with a = 17.695(3), b = 9.574(4), c = 20.104(2) Angstrom, beta = 114.18(1)degrees, V = 3107(1) Angstrom(3) and Z = 4. The final residuals are R(wR(2)) = 0.067(0.182). The complexes have a [Cu-2(mu-OH)(mu-OH)(mu-O2CAr)](2+) core with tmen Ligands occupying the terminal sites of the core. In addition, one copper is axially bound to a water molecule. The Cu ... Cu distances and the Cu-OH Cu angles in the core are 3.394(1) Angstrom, 124.4(2)degrees for 1 and 3.374(1) Angstrom, 123.3(3)degrees for 2. The complexes show axial X-band EPR spectral features in methanol glass at 77 K giving g(perpendicular to) = 2.02, g(parallel to) = 2.3 (A(parallel to) = 165 x 10(-4) cm(-1)) and a visible band near similar to 630 nm in methanol. The complexes are weakly antiferromagnetic. A theoretical fit of the magnetic susceptibility data in the temperature range 40-295 K gives -J = 10 cm(-1), g = 2.05 for 1 and -J = 10 cm(-1), g = 2.0 for 2. Plots of -2J versus the Cu-OH-Cu angle (phi) in this class of asymmetrically dibridged dicopper(II) complexes having d(x2-y2)-d(x2-y2) magnetic orbitals show a linear magneto-structural correlation: -2J(cm(-1)) = 11.48 phi(deg) - 1373.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Copper(II) complexes Cu(satp)(L)] (1-3) of a Schiff base thiolate (salicylidene-2-aminothiophenol, H(2)satP) and phenanthroline bases (L), viz. 1,10-phenanthroline (phen in 1), dipyrido3,2-d:2',3'-f]quinoxaline (dpq in 2) and dipyrido3,2-a:2',3'-c]phenazine (dppz in 3), were prepared, characterized and their anaerobic DNA photocleavage activity and hypoxic photocytotoxicity studied. The redox active complexes show the Cu(II)-Cu(I) couple near -0.5 V for 1 and near 0.0 V vs. SCE (saturated calomel electrode) for 2 and 3. The one-electron paramagnetic complexes (similar to 1.85 mu(B)) are avid DNA binders giving K(b) values within 1.0 x 10(5) - 8.0 x 10(5) M(-1). Thermal melting and viscosity data along with molecular docking calculations suggest DNA groove and/or partial intercalative binding of the complexes. The complexes show anaerobic DNA cleavage activity in red light under argon via type-I pathway, while DNA photocleavage in air proceeds via hydroxyl radical pathway. The DFT (density functional theory) calculations reveal a thyil radical pathway for the anaerobic DNA photocleavage activity and suggest the possibility of generation of a transient copper(I) species due to bond breakage between the copper and sulfur to generate the thyil radical. An oxidation of the copper(I) species is likely by oxygen in an aerobic medium or by the buffer medium in an anaerobic condition. Complex 3 exhibits significant photocytotoxicity in HeLa cells (IC(50) = 8.3(+/- 1.0) mu M) in visible light, while showing lower dark toxicity (IC(50) = 17.2(+/- 1.0) mu M). A significant reduction in the dark toxicity is observed under hypoxic cellular conditions (IC(50) = 30.0(+/- 1.0) mu M in dark), while retaining its photocytotoxicity (IC(50) = 8.0(+/- 1.0) mu M). (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordination-driven self-assembly of binuclear half-sandwich p-cymene ruthenium(II) complexes [Ru-2(mu-eta(4)-C2O4)(MeOH)(2)(eta(6)-p-cymene)(2)](O3SCF3)(2) (1a) or [Ru-2(mu-eta(4)-N,N'-diphenyloxamidato)(MeOH)(2)(eta(6)-p-cymene)(2)]( O3SCF3)(2) (1b) separately with an imidazole-based tetratopic donor L in methanol affords two tetranuclear metallamacrocycles 2a and 2b, respectively. Conversely, the similar combination of L with 2,5-dihydroxy-1,4-benzoquinonato (dhbq) bridged binuclear complex [Ru-2(mu-eta(C6H2O4)-C-4)(MeOH)(2)(eta(6)-p-cymene)(2)](O3SCF3)(2) (1c) in 1:2 molar ratio resulted in an octanuclear macrocyclic cage 2c. All the self-assembled macrocycles 2a-2c were isolated as their triflate salts in high yields and were characterized fully by multinuclear (H-1, C-13 and F-19) NMR, infrared (IR) and electrospray ionization mass spectrometry (ESIMS). In addition, the molecular structure of macrocycle 2a was established unequivocally by single-crystal X-ray diffraction analysis and adopts a tetranuclear rectangular geometry with the dimensions of 5.53 angstrom x 12.39 angstrom. Furthermore, the photo-and electrochemical properties of these newly synthesized assemblies have been studied by using UV-vis absorption and cyclic voltammetry analysis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Neutral half-sandwich organometallic ruthenium(II) complexes of the type (?6-cymene)RuCl2(L)] (H1H10), where L represents a heterocyclic ligand, have been synthesized and characterized spectroscopically. The structures of five complexes were also established by single-crystal X-ray diffraction confirming a piano-stool geometry with ?6 coordination of the arene ligand. Hydrogen bonding between the N?H group of the heterocycle and a chlorine atom attached to Ru stabilizes the metalligand interaction. Complexes coordinated to a mercaptobenzothiazole framework (H1) or mercaptobenzoxazole (H6) showed high cytotoxicity against several cancer cells but not against normal cells. In vitro studies have shown that the inhibition of cancer cell growth involves primarily G1-phase arrest as well as the generation of reactive oxygen species (ROS). The complexes are found to bind DNA in a non-intercalative fashion and cause unwinding of plasmid DNA in a cell-free medium. Surprisingly, the cytotoxic complexes H1 and H6 differ in their interaction with DNA, as observed by biophysical studies, they either cause a biphasic melting of the DNA or the inhibition of topoisomerase IIa activity, respectively. Substitution of the aromatic ring of the heterocycle or adding a second hydrogen-bond donor on the heterocycle reduces the cytotoxicity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this article we present the syntheses, characterizations, magnetic and luminescence properties of five 3d-metal complexes, Co(tib)(1,2-phda)](n)center dot(H2O)(n) (1), Co-3(tib)(2)(1,3-phda)(3)(H2O)](n)center dot(H2O)(2n) (2), Co-5(tib)(3)(1,4-phda)(5)(H2O)(3)](n)center dot(H2O)(7n) (3), Zn-3(tib)(2)(1,3-phda)(3)](n)center dot(H2O)(4n) (4), and Mn(tib)(2)(H2O)(2)](n)center dot(1,4-phdaH)(2n)center dot(H2O)(4n) (5), obtained from the use of isomeric phenylenediacetates (phda) and the neutral 1,3,5-tris(1-imidazolyl)benzene (tib) ligand. Single crystal X-ray structures showed that 1 constitutes 3,5-connected 2-nodal nets with a double-layered two-dimensional (2D) structure, while 2 forms an interpenetrated 2D network (3,4-connected 3-nodal net). Complex 3 has a complicated three-dimensional structure with 10-nodal 3,4,5-connected nets. Complex 4, although it resembles 2 in stoichiometry and basic building structures, forms a very different overall 2D assembly. In complex 5 the dicarboxylic acid, upon losing only one of the acidic protons, does not take part in coordination; instead it forms a complicated hydrogen bonding network with water molecules. Magnetic susceptibility measurements over a wide range of temperatures revealed that the metal ions exchange very poorly through the tib ligand, but for the Co(II) complexes the effects of nonquenched orbital contributions are prominent. The 3d(10) metal complex 4 showed strong luminescence with lambda(max) = 415 nm (lambda(ex) = 360 nm).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two new Ru(II)-complexes RuH(Tpms)(PPh3)(2)] 1 (Tpms - (C3H3N2)(3)CSO3, tris-(pyrazolyl) methane sulfonate) and Ru(OTf)(Tpms)(PPh3)(2)] 2 (OTf = CF3SO3) have been synthesized and characterized wherein Ru-H and Ru-OTf are the key reactive centers. Reaction of 1 with HOTf results in the Ru(eta(2)-H-2)(Tpms)(PPh3)(2)]OTf] complex 3, whereas reaction of 1 with Me3SiOTf affords the dihydrogen complex 3 and complex 1 through an unobserved sigma-silane intermediate. In addition, an attempt to characterize the sigma methane complex via reaction of complex 1 with CH3OTf yields complex 2 and free methane. On the other hand, reaction of Ru(OTf)(Tpms)(PPh3)(2)] 2 with H-2 and PhMe2SiH at low temperature resulted in sigma-H-2, 3 and a probable sigma-silane complexes, respectively. However, no sigma-methane complex was observed for the reaction of complex 2 with methane even at low temperature. (C) 2014 Elsevier B. V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Platinum(II) complexes Pt(pap)(an-cat)] (1) and Pt(pap)(py-cat)] (2) with 2-(phenylazo)pyridine (pap), 4-2-(anthracen-9-ylmethylene)amino]ethyl]benzene-1,2-diol (H(2)an-cat), and 4-2-(pyren-1-ylmethylene)amino]ethyl]benzene-1,2-diol (H2py-cat) were prepared, and their photoinduced cytotoxicity was studied. The complexes were found to release catecholate ligand in the presence of excess glutathione (GSH), resulting in cellular toxicity in the cancer cells. The catecholate complex Pt(pap)(cat)] (3) was prepared and used as a control. Complex 3, which is structurally characterized by X-ray crystallography, has platinum(II) in a distorted square-planar geometry. The complexes are redox-active, showing responses near 0.6 and 1.0 V versus SCE in N,N-dimethylformamide/0.1 M tetrabutylammonium perchlorate corresponding to a two-step catechol oxidation process and at -0.3 and -1.3 V for reduction of the pap ligand. Complex 1 showed remarkable light-induced cytotoxicity in HaCaT (human skin keratinocytes) and MCF-7 (human breast cancer) cells, giving IC50 value of similar to 5 mu M in visible light of 400-700 nm and >40 mu M in the dark. The 2',7'-dichlorofluorescein diacetate (DCFDA) assay showed the generation of reactive oxygen species (ROS), which seems to trigger apoptosis, as is evident from the annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) assay. The fluorescence microscopic images showed significant nuclear localization of the complexes and free ligands. A mechanistic study revealed possible reduction of the coordinated azo bond of pap by cellular GSH, releasing the catecholate ligand and resulting in remarkable photochemotherapeutic action of the complexes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

CONSPECTUS: Curcumin is a polyphenolic species. As an active ingredient of turmeric, it is well-known for its traditional medicinal properties. The therapeutic values include antioxidant, anti-inflammatory, antiseptic, and anticancer activity with the last being primarily due to inhibition of the transcription factor NF-kappa B besides affecting several biological pathways to arrest tumor growth and its progression. Curcumin with all these positive qualities has only remained a potential candidate for cancer treatment over the years without seeing any proper usage because of its hydrolytic instability involving the diketo moiety in a cellular medium and its poor bioavailability. The situation has changed considerably in recent years with the observation that curcumin in monoanionic form could be stabilized on binding to a metal ion. The reports from our group and other groups have shown that curcumin in the metal-bound form retains its therapeutic potential. This has opened up new avenues to develop curcumin-based metal complexes as anticancer agents. Zinc(II) complexes of curcumin are shown to be stable in a cellular medium. They display moderate cytotoxicity against prostate cancer and neuroblastoma cell lines. A similar stabilization and cytotoxic effect is reported for (arene)ruthenium(II) complexes of curcumin against a variety of cell lines. The half-sandwich 1,3,5-triaza-7-phosphatricyclo-3.3.1.1]decane (RAPTA)-type ruthenium(II) complexes of curcumin are shown to be promising cytotoxic agents with low micromolar concentrations for a series of cancer cell lines. In a different approach, cobalt(III) complexes of curcumin are used for its cellular delivery in hypoxic tumor cells using intracellular agents that reduce the metal and release curcumin as a cytotoxin. Utilizing the photophysical and photochemical properties of the curcumin dye, we have designed and synthesized photoactive curcumin metal complexes that are used for cellular imaging by fluorescence microscopy and damaging the cancer cells on photoactivation in visible light while being minimally toxic in darkness. In this Account, we have made an attempt to review the current status of the chemistry of metal curcumin complexes and present results from our recent studies on curcumin complexes showing remarkable in vitro photocytotoxicity. The undesirable dark toxicity of the complexes can be reduced with suitable choice of the metal and the ancillary ligands in a ternary structure. The complexes can be directed to specific subcellular organelles. Selectivity by targeting cancer cells over normal cells can be achieved with suitable ligand design. We expect that this methodology is likely to provide an impetus toward developing curcumin-based photochemotherapeutics for anticancer treatment and cure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two dinuclear copper(II) complexes Li(H2O)(3)(CH3OH)](4)Cu2Br4]Cu-2(cpdp)(mu-O2CCH3)](4)(OH)(2) (1), Cu (H2O)(4)]Cu-2(cpdp)(mu-O2CC6H5)](2)Cl-2 center dot 5H(2)O (2), and a dinuclear zinc(II) complex Zn-2(cpdp)(mu-O2CCH3)] (3) have been synthesized using pyridine and benzoate functionality based new symmetrical dinucleating ligand, N, N'-Bis2-carboxybenzomethyl]-N, N'-Bis2-pyridylmethyl]-1,3-diaminopropan-2-ol (H(3)cpdp). Complexes 1, 2 and 3 have been synthesized by carrying out reaction of the ligand H3cpdp with stoichiometric amounts of Cu-2(O2CCH3)(4)(H2O)(2)], CuCl2 center dot 2H(2)O/C6H5COONa, and Zn(CH3COO)(2)center dot 2H(2)O, respectively, in methanol in the presence of NaOH at ambient temperature. Characterizations of the complexes have been done using various analytical techniques including single crystal X-ray structure determination. The X-ray crystal structure analyses reveal that the copper(II) ions in complexes 1 and 2 are in a distorted square pyramidal geometry with Cu-Cu separation of 3.455(8) angstrom and 3.492(1)angstrom, respectively. The DFT optimized structure of complex 3 indicates that two zinc(II) ions are in a distorted square pyramidal geometry with Zn-Zn separation of 3.492(8)angstrom. UV-Vis and mass spectrometric analyses of the complexes confirm their dimeric nature in solution. Furthermore, H-1 and C-13 NMR spectroscopic investigations authenticate the integrity of complex 3 in solution. Variable-temperature (2-300 K) magnetic susceptibility measurements show the presence of antiferromagnetic interactions between the copper centers, with J = -26.0 cm(-1) and -23.9 cm(-1) ((H) over cap = -2JS(1)S(2)) in complexes 1 and 2, respectively. In addition, glycosidase-like activity of the complexes has been investigated in aqueous solution at pH similar to 10.5 by UV-Vis spectrophotometric technique using p-nitrophenyl-alpha-D-glucopyranoside (4) and p-nitrophenyl-beta-D-glucopyranoside (5) as model substrates. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordination-driven self-assembly of dinuclear half-sandwich p-cymene ruthenium(II) complexes Ru-2(mu-eta(4)-C2O4)(CH3OH)(2)(eta(6)-p-cymene)(2)](O3SCF3)(2) (1a) and Ru-2(mu-eta(4)-C6H2O4)(CH3OH)(2)(eta(6)-p-cymene)(2)](O3SCF3)(2) (1b) separately with imidazole-based tritopic donors (L-1-L-2) in methanol yielded a series of hexanuclear 3+2] trigonal prismatic cages (2-5), respectively L-1 = 1,3,5-tris(imidazole-1-yl) benzene; L-2 = 4,4',4 `'-tris(imidazole-1-yl) triphenylamine]. All the self-assembled cages 2-5 were characterized by various spectroscopic techniques (multinuclear NMR, Infra-red and ESI-MS) and their sizes, shapes were obtained through geometry optimization using molecular mechanics universal force field (MMUFF) computation. Despite the possibility due to the free rotation of donor sites of imidazole ligands, of two different atropoisomeric prismatic cages (C-3h or C-s) and polymeric product, the self-selection of single (C(3)h) conformational isomeric cages as the only product is a noteworthy observation. (C) 2015 Elsevier B.V. All rights reserved.