162 resultados para Long-range Correlation
Resumo:
In this paper we report a systematic study of low-frequency 1/fα resistance fluctuation in a metal film at different stages of electromigration. The resistance fluctuation (noise) measurement was carried out in presence of a dc electromigration stressing current. We observe that in addition to the increase in the spectral power SV(f), the frequency dependence of the spectral power changes as the electromigration process progresses and the exponent α starts to change from 1 to higher value closer to 1.5. We interpret this change in α as arising due to an additional contribution to the spectral power with a 1/f3/2 component, which starts to contribute as the electromigration process progresses. This additional component SV(f) ∼ 1/f3/2 has been suggested to originate from long range diffusion that would accompany any electromigration process. The experimental observation finds support in a model simulation, where we also find that the enhancement of noise during electromigration stressing is accompanied by a change in spectral power frequency dependence.
Resumo:
Compositionally varying multilayers of (1−x) Pb(Mg1/3N2/3)O3–(x) PbTiO3 were fabricated using pulsed laser ablation technique. An antiferroelectriclike polarization hysteresis was observed in these relaxor based multilayer systems. The competition among the intrinsic ferroelectric coupling in the relaxor ferroelectrics and the antiferroelectric coupling among the dipoles at the interface gives rise to an antiferroelectriclike polarization behavior. An increment in the coercive field and the applied field corresponding to the polarization flipping at low temperatures, provide further insight on the competition among the long-range ferroelectric interaction and the interfacial interaction in the polarization behavior of these relaxor multilayers.
Resumo:
Ferroelectric superlattice structures consisting of alternating layers of BaTiO3 and SrTiO3 with variable interlayer thickness were grown on Pt (111)/TiO2/SiO2/Si (100) substrates by pulsed laser deposition. The presence of superlattice reflections in the x-ray diffraction pattern clearly showed the superlattice behavior of the fabricated structures over a range of 6.4–20 nm individual layer thicknesses. Depth profile conducted by secondary ion mass spectrometry analysis showed a periodic concentration of Ba and Sr throughout the film. Polarization hysteresis and the capacitance-voltage characteristics of these films show clear size dependent ferroelectric characteristics. The spontaneous (Ps) and remnant (Pr) polarizations increase gradually with decreasing periodicity, reach a maximum at a finite thickness and then decrease. The competition between the size effect and long-range ferroelectric interaction is suggested as a possible reason for this phenomenon. The temperature dependence of Ps and Pr shows a single ferroelectric phase transition, and the Curie temperature is estimated to be about 316 K. The curve shows that the ferroelectric superlattice tends to form an artificial material, responding as a single structure with an averaged behavior of both the parent systems.
Resumo:
We investigate the effect of static electron-phonon coupling on real-time dynamics of spin and charge transport in pi-conjugated polyene chains. The polyene chain is modeled by the Pariser-Parr-Pople Hamiltonian with dimerized nearest-neighbor parameter t(0)(1 + delta) for short bonds and t(0)(1 - delta) for long bonds, and long-range electron-electron interactions. We follow the time evolution of the spin and charge using time-dependent density matrix renormalization group technique when a hole is injected at one end of the chain in its ground state. We find that spin and charge dynamics followed through spin and charge velocities depend both on chain length and extent of dimerization delta. Analysis of the results requires focusing on physical quantities such as average spin and charge polarizations, particularly in the large dimerization limit. In the dimerization range 0.0 <= delta <= 0.15, spin-charge dynamics is found to have a well-defined behavior, with spin-charge separation (measured as the ratio of charge velocity to spin velocity) as well as the total amount of charge and spin transported in a given time along the chain decreasing as dimerization increases. However, in the range 0.3 <= delta <= 0.5, it is observed that the dynamics of spin and charge transport becomes complicated. It is observed that, for large delta values, spin-charge separation is suppressed and the injected hole fails to travel the entire length of the chain.
Resumo:
We investigate a system of fermions on a two-dimensional optical square lattice in the strongly repulsive coupling regime. In this case, the interactions can be controlled by laser intensity as well as by Feshbach resonance. We compare the energetics of states with resonating valence bond d-wave superfluidity, antiferromagnetic long-range order, and a homogeneous state with coexistence of superfluidity and antiferromagnetism. Using a variational formalism, we show that the energy density of a hole e(hole)(x) has a minimum at doping x = x(c) that signals phase separation between the antiferromagnetic and d-wave paired superfluid phases. The energy of the phase-separated ground state is, however, found to be very close to that of a homogeneous state with coexisting antiferromagnetic and superfluid orders. We explore the dependence of the energy on the interaction strength and on the three-site hopping terms and compare with the nearest-neighbor hopping t-J model.
Resumo:
The symmetrized density matrix renormalization group method is used to study linear and nonlinear optical properties of free base porphine and metalloporphine. Long-range interacting model, namely, Pariser-Parr-Pople model is employed to capture the quantum many-body effect in these systems. The nonlinear optical coefficients are computed within the correction vector method. The computed singlet and triplet low-lying excited state energies and their charge densities are in excellent agreement with experimental as well as many other theoretical results. The rearrangement of the charge density at carbon and nitrogen sites, on excitation, is discussed. From our bond order calculation, we conclude that porphine is well described by the 18-annulenic structure in the ground state and the molecule expands upon excitation. We have modeled the regular metalloporphine by taking an effective electric field due to the metal ion and computed the excitation spectrum. Metalloporphines have D(4h) symmetry and hence have more degenerate excited states. The ground state of metalloporphines shows 20-annulenic structure, as the charge on the metal ion increases. The linear polarizability seems to increase with the charge initially and then saturates. The same trend is observed in third order polarizability coefficients. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3671946]
Resumo:
In this paper we investigate the effect of terminal substituents on the dynamics of spin and charge transport in donor-acceptor substituted polyenes [D-(CH)(x)-A] chains, also known as push-pull polyenes. We employ a long-range correlated model Hamiltonian for the D-(CH)(x)-A system, and time-dependent density matrix renormalization group technique for time propagating the wave packet obtained by injecting a hole at a terminal site, in the ground state of the system. Our studies reveal that the end groups do not affect spin and charge velocities in any significant way, but change the amount of charge transported. We have compared these push-pull systems with donor-acceptor substituted polymethine imine (PMI), D-(CHN)(x)-A, systems in which besides electron affinities, the nature of p(z) orbitals in conjugation also alternate from site to site. We note that spin and charge dynamics in the PMIs are very different from that observed in the case of push-pull polyenes, and within the time scale of our studies, transport of spin and charge leads to the formation of a ``quasi-static'' state.
Resumo:
Powder neutron di®raction and Hi-Q neutron di®raction data have been recorded and analysed in order to obtain the local and long range order of Cu in Cu-doped CeO2 with three doping levels of Cu. Rietveld method and MCGR techniques of data analysis for the two types of data reveal that the Cu ion is in the 2+ oxidation state and has a vacancy in its ¯rst coordination shell. These deductions from the data analysis ¯t well with the mechanism of catalysis we propose.
Resumo:
Systematic observations of light detection and ranging (LIDAR) to detect elevated aerosol layer were carried out at Manora Peak (29.4 degrees N, 79.5 degrees E, similar to 1960 m a.s.l), Nainital, in the Central Himalayas during January-May 2008. In spite of being a remote, high-altitude site, an elevated aerosol layer is observed quite frequently in the altitude range of 2460-4460 m a.s.l with a width of similar to 2 km during the observation period. We compare these profiles with the vertical profiles observed over Gadanki (13.5 degrees N, 79.2 degrees E, similar to 370 m a.s.l), a tropical station, where no such elevated aerosol layer was found. Further, there is a steady increase in aerosol optical depth (AOD) from January (winter) to May (summer) from 0.043 to 0.742, respectively, at Manora Peak, indicating aerosol loading in the atmosphere. Our observations show north-westerly winds indicating the convective lifting of aerosols from far-off regions followed by horizontal long-range transport. The presence of strongly absorbing and scattering aerosols in the elevated layer resulted in a relatively large diurnal mean aerosol surface radiative forcing efficiency (forcing per unit optical depth) of about -65 and -63 W m(-2) and the corresponding mean reduction in the observed net solar flux at the surface (cooling effect) is as high as -22 and -30 W m(-2). The reduction of radiation will heat the lower atmosphere by redistributing the radiation with heating rate of 1.13 and 1.31 K day(-1) for April and May 2008, respectively, in the lower atmosphere.
Resumo:
High temperature superconductivity in the cuprates remains one of the most widely investigated, constantly surprising and poorly understood phenomena in physics. Here, we describe briefly a new phenomenological theory inspired by the celebrated description of superconductivity due to Ginzburg and Landau and believed to describe its essence. This posits a free energy functional for the superconductor in terms of a complex order parameter characterizing it. We propose that there is, for superconducting cuprates, a similar functional of the complex, in plane, nearest neighbor spin singlet bond (or Cooper) pair amplitude psi(ij). Further, we suggest that a crucial part of it is a (short range) positive interaction between nearest neighbor bond pairs, of strength J'. Such an interaction leads to nonzero long wavelength phase stiffness or superconductive long range order, with the observed d-wave symmetry, below a temperature T-c similar to zJ' where z is the number of nearest neighbors; d-wave superconductivity is thus an emergent, collective consequence. Using the functional, we calculate a large range of properties, e. g., the pseudogap transition temperature T* as a function of hole doping x, the transition curve T-c(x), the superfluid stiffness rho(s)(x, T), the specific heat (without and with a magnetic field) due to the fluctuating pair degrees of freedom and the zero temperature vortex structure. We find remarkable agreement with experiment. We also calculate the self-energy of electrons hopping on the square cuprate lattice and coupled to electrons of nearly opposite momenta via inevitable long wavelength Cooper pair fluctuations formed of these electrons. The ensuing results for electron spectral density are successfully compared with recent experimental results for angle resolved photo emission spectroscopy (ARPES), and comprehensively explain strange features such as temperature dependent Fermi arcs above T-c and the ``bending'' of the superconducting gap below T-c.
Resumo:
There are many well-known examples of proteins with low sequence similarity, adopting the same structural fold. This aspect of sequence-structure relationship has been extensively studied both experimentally and theoretically, however with limited success. Most of the studies consider remote homology or ``sequence conservation'' as the basis for their understanding. Recently ``interaction energy'' based network formalism (Protein Energy Networks (PENs)) was developed to understand the determinants of protein structures. In this paper we have used these PENs to investigate the common non-covalent interactions and their collective features which stabilize the TIM barrel fold. We have also developed a method of aligning PENs in order to understand the spatial conservation of interactions in the fold. We have identified key common interactions responsible for the conservation of the TIM fold, despite high sequence dissimilarity. For instance, the central beta barrel of the TIM fold is stabilized by long-range high energy electrostatic interactions and low-energy contiguous vdW interactions in certain families. The other interfaces like the helix-sheet or the helix-helix seem to be devoid of any high energy conserved interactions. Conserved interactions in the loop regions around the catalytic site of the TIM fold have also been identified, pointing out their significance in both structural and functional evolution. Based on these investigations, we have developed a novel network based phylogenetic analysis for remote homologues, which can perform better than sequence based phylogeny. Such an analysis is more meaningful from both structural and functional evolutionary perspective. We believe that the information obtained through the ``interaction conservation'' viewpoint and the subsequently developed method of structure network alignment, can shed new light in the fields of fold organization and de novo computational protein design.
Resumo:
Nanoindentation and scratch experiments on 1:1 donor-acceptor complexes, 1 and 2, of 1,2,4,5-tetracyanobenzene with pyrene and phenanthrene, respectively, reveal long-range molecular layer gliding and large interaction anisotropy. Due to the layered arrangements in these crystals, these experiments that apply stress in particular directions result in the breaking of interlayer interactions, thus allowing molecular sheets to glide over one another with ease. Complex 1 has a layered crystal packing wherein the layers are 68° skew under the (002) face and the interlayer space is stabilized by van der Waals interactions. Upon indenting this surface with a Berkovich tip, pile-up of material was observed on just one side of the indenter due to the close angular alignment of the layers with the half angle of the indenter tip (65.35°). The interfacial differences in the elastic modulus (21 ) and hardness (16 ) demonstrate the anisotropic nature of crystal packing. In 2, the molecular stacks are arranged in a staggered manner; there is no layer arrangement, and the interlayer stabilization involves C-H�N hydrogen bonds and ��� interactions. This results in a higher modulus (20 ) for (020) as compared to (001), although the anisotropy in hardness is minimal (4 ). The anisotropy within a face was analyzed using AFM image scans and the coefficient of friction of four orthogonal nanoscratches on the cleavage planes of 1 and 2. A higher friction coefficient was obtained for 2 as compared to 1 even in the cleavage direction due to the presence of hydrogen bonds in the interlayer region making the tip movement more hindered. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
We studied structural and magnetic properties of a series of insulating double perovskite compounds, La2-xSrxCuRuO6 (0 <= x <= 1), representing doping via A-site substitution. The end members La2CuRuO6 and LaSrCuRuO6 form in monoclinic structure while the intermediate Sr doped compounds stabilize in triclinic structure. The Cu and Ru ions sit on alternate B sites of the perovskite lattice with similar to 15% antisite defects in the undoped sample while the Sr-doped samples show a tendency to higher ordering at B sites. The undoped (x = 0) compound shows a ferrimagnetic-like behavior at low temperatures. In surprising contrast to the usual expectation of an enhancement of ferromagnetic interaction on doping, an antiferromagnetic-like ground state is realized for all doped samples (x > 0). Heat capacity measurements indicate the absence of any long-range magnetic order in any of these compounds. The magnetic relaxation and memory effects observed in all compounds suggest glassy dynamical properties associated with magnetic disorder and frustration. We show that the observed magnetic properties are dominated by the competition between the nearest-neighbor Ru-O-Cu 180 degrees superexchange interaction and the next-nearest-neighbor Ru-O-O-Ru 90 degrees superexchange interaction as well as by the formation of antisite defects with interchanged Cu and Ru positions. Our calculated exchange interaction parameters from first principles calculations for x = 0 and x = 1 support this interpretation.
Resumo:
We carry out a comparative study of the electronic structure of two pyrochlore ruthenate compounds, Tl2Ru2O7 and Hg2Ru2O7, in terms of first principles calculations. Our study reveals the Ru d electrons in Hg2Ru2O7 to be much more delocalized compared to that in Tl2Ru2O7. The subtle change in the Ru-d bandwidths in the two compounds, triggered by the differences in Hg 5d-Ru 4d hybridization compared to that of Tl 5d-Ru 4d, bring in the observed differences in behavior. Our study further shows that the development of long range noncollinear antiferromagnetic structure at low temperature is sufficient to produce the insulating solution in Hg2Ru2O7, in line with the prediction from recent nuclear magnetic resonance study.
Resumo:
DNA three-way junctions (TWJs) are important intermediates in various cellular processes and are the simplest of a family of branched nucleic acids being considered as scaffolds for biomolecular nanotechnology. Branched nucleic acids are stabilized by divalent cations such as Mg2+, presumably due to condensation and neutralization of the negatively charged DNA backbone. However, electrostatic screening effects point to more complex solvation dynamics and a large role of interfacial waters in thermodynamic stability. Here, we report extensive computer simulations in explicit water and salt on a model TWJ and use free energy calculations to quantify the role of ionic character and strength on stability. We find that enthalpic stabilization of the first and second hydration shells by Mg2+ accounts for 1/3 and all of the free energy gain in 50% and pure MgCl2 solutions, respectively. The more distorted DNA molecule is actually destabilized in pure MgCl2 compared to pure NaCl. Notably, the first shell, interfacial waters have very low translational and rotational entropy (i.e., mobility) compared to the bulk, an entropic loss that is overcompensated by increased enthalpy from additional electrostatic interactions with Mg2+. In contrast, the second hydration shell has anomalously high entropy as it is trapped between an immobile and bulklike layer. The nonmonotonic entropic signature and long-range perturbations of the hydration shells to Mg2+ may have implications in the molecular recognition of these motifs. For example, we find that low salt stabilizes the parallel configuration of the three-way junction, whereas at normal salt we find antiparallel configurations deduced from the NMR. We use the 2PT analysis to follow the thermodynamics of this transition and find that the free energy barrier is dominated by entropic effects that result from the decreased surface area of the antiparallel form which has a smaller number of low entropy waters in the first monolayer.