156 resultados para Logic-based optimization algorithm
Resumo:
Seismic design of reinforced soil structures involves many uncertainties that arise from the backfill soil properties and tensile strength of the reinforcement which is not addressed in current design guidelines. This paper highlights the significance of variability in the internal stability assessment of reinforced soil structures. Reliability analysis is applied to estimate probability of failure and pseudo‐static approach has been used for the calculation of the tensile strength and length of the reinforcement needed to maintain the internal stability against tension and pullout failures. Logarithmic spiral failure surface has been considered in conjunction with the limit equilibrium method. Two modes of failure namely, tension failure and pullout failure have been considered. The influence of variations of the backfill soil friction angle, the tensile strength of reinforcement, horizontal seismic acceleration on the reliability index against tension failure and pullout failure of reinforced earth structure have been discussed.
Resumo:
Motion Estimation is one of the most power hungry operations in video coding. While optimal search (eg. full search)methods give best quality, non optimal methods are often used in order to reduce cost and power. Various algorithms have been used in practice that trade off quality vs. complexity. Global elimination is an algorithm based on pixel averaging to reduce complexity of motion search while keeping performance close to that of full search. We propose an adaptive version of the global elimination algorithm that extracts individual macro-block features using Hadamard transform to optimize the search. Performance achieved is close to the full search method and global elimination. Operational complexity and hence power is reduced by 30% to 45% compared to global elimination method.
Resumo:
Use of engineered landfills for the disposal of industrial wastes is currently a common practice. Bentonite is attracting a greater attention not only as capping and lining materials in landfills but also as buffer and backfill materials for repositories of high-level nuclear waste around the world. In the design of buffer and backfill materials, it is important to know the swelling pressures of compacted bentonite with different electrolyte solutions. The theoretical studies on swell pressure behaviour are all based on Diffuse Double Layer (DDL) theory. To establish a relation between the swell pressure and void ratio of the soil, it is necessary to calculate the mid-plane potential in the diffuse part of the interacting ionic double layers. The difficulty in these calculations is the elliptic integral involved in the relation between half space distance and mid plane potential. Several investigators circumvented this problem using indirect methods or by using cumbersome numerical techniques. In this work, a novel approach is proposed for theoretical estimations of swell pressures of fine-grained soil from the DDL theory. The proposed approach circumvents the complex computations in establishing the relationship between mid-plane potential and diffused plates’ distances in other words, between swell pressure and void ratio.
Resumo:
Theoretical approaches are of fundamental importance to predict the potential impact of waste disposal facilities on ground water contamination. Appropriate design parameters are, in general, estimated by fitting the theoretical models to a field monitoring or laboratory experimental data. Double-reservoir diffusion (Transient Through-Diffusion) experiments are generally conducted in the laboratory to estimate the mass transport parameters of the proposed barrier material. These design parameters are estimated by manual parameter adjusting techniques (also called eye-fitting) like Pollute. In this work an automated inverse model is developed to estimate the mass transport parameters from transient through-diffusion experimental data. The proposed inverse model uses particle swarm optimization (PSO) algorithm which is based on the social behaviour of animals for finding their food sources. Finite difference numerical solution of the transient through-diffusion mathematical model is integrated with the PSO algorithm to solve the inverse problem of parameter estimation.The working principle of the new solver is demonstrated by estimating mass transport parameters from the published transient through-diffusion experimental data. The estimated values are compared with the values obtained by existing procedure. The present technique is robust and efficient. The mass transport parameters are obtained with a very good precision in less time
Resumo:
As the gap between processor and memory continues to grow Memory performance becomes a key performance bottleneck for many applications. Compilers therefore increasingly seek to modify an application’s data layout to improve cache locality and cache reuse. Whole program Structure Layout [WPSL] transformations can significantly increase the spatial locality of data and reduce the runtime of programs that use link-based data structures, by increasing the cache line utilization. However, in production compilers WPSL transformations do not realize the entire performance potential possible due to a number of factors. Structure layout decisions made on the basis of whole program aggregated affinity/hotness of structure fields, can be sub optimal for local code regions. WPSL is also restricted in applicability in production compilers for type unsafe languages like C/C++ due to the extensive legality checks and field sensitive pointer analysis required over the entire application. In order to overcome the issues associated with WPSL, we propose Region Based Structure Layout (RBSL) optimization framework, using selective data copying. We describe our RBSL framework, implemented in the production compiler for C/C++ on HP-UX IA-64. We show that acting in complement to the existing and mature WPSL transformation framework in our compiler, RBSL improves application performance in pointer intensive SPEC benchmarks ranging from 3% to 28% over WPSL
Resumo:
In this paper the use of probability theory in reliability based optimum design of reinforced gravity retaining wall is described. The formulation for computing system reliability index is presented. A parametric study is conducted using advanced first order second moment method (AFOSM) developed by Hasofer-Lind and Rackwitz-Fiessler (HL-RF) to asses the effect of uncertainties in design parameters on the probability of failure of reinforced gravity retaining wall. Totally 8 modes of failure are considered, viz overturning, sliding, eccentricity, bearing capacity failure, shear and moment failure in the toe slab and heel slab. The analysis is performed by treating back fill soil properties, foundation soil properties, geometric properties of wall, reinforcement properties and concrete properties as random variables. These results are used to investigate optimum wall proportions for different coefficients of variation of φ (5% and 10%) and targeting system reliability index (βt) in the range of 3 – 3.2.
Resumo:
We present two efficient discrete parameter simulation optimization (DPSO) algorithms for the long-run average cost objective. One of these algorithms uses the smoothed functional approximation (SFA) procedure, while the other is based on simultaneous perturbation stochastic approximation (SPSA). The use of SFA for DPSO had not been proposed previously in the literature. Further, both algorithms adopt an interesting technique of random projections that we present here for the first time. We give a proof of convergence of our algorithms. Next, we present detailed numerical experiments on a problem of admission control with dependent service times. We consider two different settings involving parameter sets that have moderate and large sizes, respectively. On the first setting, we also show performance comparisons with the well-studied optimal computing budget allocation (OCBA) algorithm and also the equal allocation algorithm. Note to Practitioners-Even though SPSA and SFA have been devised in the literature for continuous optimization problems, our results indicate that they can be powerful techniques even when they are adapted to discrete optimization settings. OCBA is widely recognized as one of the most powerful methods for discrete optimization when the parameter sets are of small or moderate size. On a setting involving a parameter set of size 100, we observe that when the computing budget is small, both SPSA and OCBA show similar performance and are better in comparison to SFA, however, as the computing budget is increased, SPSA and SFA show better performance than OCBA. Both our algorithms also show good performance when the parameter set has a size of 10(8). SFA is seen to show the best overall performance. Unlike most other DPSO algorithms in the literature, an advantage with our algorithms is that they are easily implementable regardless of the size of the parameter sets and show good performance in both scenarios.
Resumo:
We address the problem of estimating the fundamental frequency of voiced speech. We present a novel solution motivated by the importance of amplitude modulation in sound processing and speech perception. The new algorithm is based on a cumulative spectrum computed from the temporal envelope of various subbands. We provide theoretical analysis to derive the new pitch estimator based on the temporal envelope of the bandpass speech signal. We report extensive experimental performance for synthetic as well as natural vowels for both realworld noisy and noise-free data. Experimental results show that the new technique performs accurate pitch estimation and is robust to noise. We also show that the technique is superior to the autocorrelation technique for pitch estimation.
Resumo:
Fuzzy logic control (FLC) systems have been applied as an effective control system in various fields, including vibration control of structures. The advantage of this approach is its inherent robustness and ability to handle non‐linearities and uncertainties in structural behavior and loading. The study evaluates the three‐dimensional benchmark control problem for a seismically excited highway bridge using an ANFIS driven hydraulic actuators. An ANN based training strategy that considers both velocity and acceleration feedback together with a fuzzy logic rule base is developed. Present study needs only 4 accelerometers and 4 fuzzy rule bases to determine the control force, instead of 8 accelerometers and 4 displacement transducers used in the benchmark study problem. The results obtained are better than that obtained from the benchmark control algorithm.