247 resultados para Leptomysin A and Leptomycin B


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The solvation time correlation function for solvation in liquid water was measured recently. The solvation was found to be very fast, with a time constant equal to 55 fs. In this article we present theoretical studies on solvation dynamics of ionic and dipolar solutes in liquid water, based on the molecular hydrodynamic approach developed earlier. The molecular hydrodynamic theory can successfully predict the ultrafast dynamics of solvation in liquid water as observed from recent experiments. The present study also reveals some interesting aspects of dipolar solvation dynamics, which differs significantly from that of ionic solvation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The entry of the plant toxin ricin and its A- and B-subunits in model membranes in the presence as well as absence of monosialoganglioside (GM(1)) has been studied. Dioleoylphosphatidylcholine and 5-, 10-, and 12-doxyl- or 9,10-dibromophosphatidylcholines serve as quenchers of intrinsic tryptophan fluorescence of the proteins. The parallax method of Chattopadhyay and London [(1987) Biochemistry 26, 39-45] has been employed to measure the average membrane penetration depth of tryptophans of ricin and its B-chain and the actual depth of the sole Trp 211 in the A-chain. The results indicate that both of the chains as well as intact ricin penetrate the membrane deeply and the C-terminal end of the A-chain is well inside the bilayer, especially at pH 4.5. An extrinsic probe N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl) ethylenediamine (I-AEDANS) has been attached to Cys 259 of the A-chain, and the kinetics of penetration has been followed by monitoring the increase in AEDANS fluorescence at 480 nm. The insertion follows first-order kinetics, and the rate constant is higher at a lower pH. The energy transfer distance analysis between Trp 211 and AEDANS points out that the conformation of the A-chain changes as it inserts into the membrane. CD studies indicate that the helicity of the proteins increases after penetration, which implies that some of the unordered structure in the native protein is converted to the ordered form during this process. Hydrophobic forces seem to be responsible for stabilizing a particular protein conformation inside the membrane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A general analysis of squeezing transformations for two-mode systems is given based on the four-dimensional real symplectic group Sp(4, R). Within the framework of the unitary (metaplectic) representation of this group, a distinction between compact photon-number-conserving and noncompact photon-number-nonconserving squeezing transformations is made. We exploit the U(2) invariant squeezing criterion to divide the set of all squeezing transformations into a two-parameter family of distinct equivalence classes with representative elements chosen for each class. Familiar two-mode squeezing transformations in the literature are recognized in our framework and seen to form a set of measure zero. Examples of squeezed coherent and thermal states are worked out. The need to extend the heterodyne detection scheme to encompass all of U(2) is emphasized, and known experimental situations where all U(2) elements can be reproduced are briefly described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonliving waste biomass consisting of Aspergillus niger attached to wheat bran was used as a biosorbent for the removal of copper and zinc from aqueous solutions. Copper and zinc uptake by the biomass obeyed Langmuir isotherms. The binding capacity of the biomass for copper was found to be higher than that for zinc. The metal uptake, expressed in milligrams per gram of biomass, was found to be a function of: the initial metal concentration (with the uptake decreasing with increasing initial concentration), the biomass loading (with the uptake decreasing with increasing biomass loading) and pH (with the uptake increasing with increasing pH in the range of 1.5 and 6.0). The metal uptake was significantly affected in the presence of a co-ion. The uptake of copper by the biomass decreased in the presence of zinc and vice versa. The decrease in metal uptake was dependent on the concentrations of metals in the two-component aqueous solutions. The effect of copper on zinc uptake was more pronounced than the effect of zinc on copper uptake.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous work has shown that irrespective of the route of exposure methyl isocyanate (MIC) caused acute lactic acidosis in rats (Jeevaratnam et al., Arch. Environ. Contam. Toxicol. 19, 314�319, 1990) and the hypoxia was of stagnant type due to tissue hypoperfusion resulting from hypovolemic hypotension in rabbits administered MIC subcutaneously (Jeevarathinam et al., Toxicology 51, 223�240, 1988). The present study was designed to investigate whether MIC could induce histotoxic hypoxia through its effects on mitochondrial respiration. Male Wistar rats were used for liver mitochondrial and submitochondrial particle (SMP) preparation. Addition of MIC to tightly coupled mitochondria in vitro resulted in stimulation of state 4 respiration, abolition of respiratory control, decrease in ADP/O ratio, and inhibition of state 3 oxidation. The oxidation of NAD+-linked substrates (glutamate + malate) was more sensitive (fiveto sixfold) to the inhibitory action of MIC than succinate while cytochrome oxidase remained unaffected. MIC induced twofold delay in the onset of anerobiosis, and cytochrome b reduction in SMP with NADH in vitro confirms inhibition of electron transport at complex I region. MIC also stimulated the ATPase activity in tightly coupled mitochondria while lipid peroxidation remained unaffected. As its hydrolysis products, methylamine and N,N?-dimethylurea failed to elicit any change in vitro; these effects reveal that MIC per se acts as an inhibitor of electron transport and a weak uncoupler. Administration of MIC sc at lethal dose caused a similar change only with NAD+-linked substrates, reflecting impairment of mitochondrial respiration at complex I region and thereby induction of histotoxic hypoxia in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The well-known linear relationship (T?S# =??H# +?, where 1 >? > 0,? > 0) between the entropy (?S#) and the enthalpy (?H#) of activation for reactions in polar liquids is investigated by using a molecular theory. An explicit derivation of this linear relation from first principles is presented for an outersphere charge transfer reaction. The derivation offers microscopic interpretation for the quantities? and?. It has also been possible to make connection with and justify the arguments of Bell put forward many years ago.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is widely known that the compressed monolayers and bilayers of chiral lipids or fatty acids form helical morphologies, while the corresponding racemic modification gives only flat platelets without twist. No molecular explanation of this phenomenon is yet available, although subtle interactions at the chiral centers have often been proposed as the driving force behind the morphology of the aggregate to form a particular shape. In the present study, the morphologies of the chiral amphiphilic assemblies have been predicted on the basis of an effective pair potential between the molecules, which depends on the relative sizes of the groups attached to the chiral centers, the orientation of the amphiphilic molecules and also on the distance between them. It is shown that fur a pair of same kind of enantiomers, the minimum energy conformation favours a twist angle between them. This twist between the neighbouring molecules gives rise to the helicity of the aggregate. The present theory also shows from the molecular considerations that for a pair of mirror-image isomers (i.e. the racemic modification) the minimum energy conformation corresponds to the zero angle between the molecules, thus giving rise to flat platelets as observed in experiments. Another fascinating aspect of such chirality driven helical structures is that the sense (or the handedness) of the helix is highly specific about the chirality of the monomer concerned. The molecular theory shows, for the first time, that the sense of the helical structures in many cases is determined by the sizes of the groups attached to the chiral centers and the effective potential between them. The predicted senses of the helical structures are in complete agreement with the experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electron transfer reactions between donor-acceptor pairs in solution and in organized media exhibit diverse behaviour. Recent experiments have indicated an interesting breakdown of the Marcus parabolic energy gap dependence in the normal regime for back electron transfer from contact ion pairs. A novel explanation of this breakdown has recently been proposed (M. Tachiya and S. Murata, J. Am. Chem. Sec., 116(1994) 2434) which attributes the breakdown to the interplay between the relaxation in the reactant well and the reaction. A particularly interesting aspect of the model is that it envisages the electron transfer in the normal regime to take place from a completely non-equilibrium condition. In this article a time dependent solution of the model is presented for the first time, after generalizing it to include a realistic initial population distribution. The decay of the contact ion pair population is completely non-exponential. This can be used to check the validity of the Tachiya-Murata model. The dynamics of electron transfer from the solvent separated ion pair, which seem to obey the Marcus relation, is exponential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electron transfer reactions in large molecules may often be coupled to both the polar solvent modes and the intramolecular vibrational modes of the molecule. This can give rise to a complex dynamics which may in some systems, like betaine, be controlled more by vibrational rather than by solvent effects. Additionally, a significant contribution from an ultrafast relaxation component in the solvation dynamics may enhance the complexity. To explain the wide range of behavior that has been observed experimentally, Barbara et al. recently proposed that a model of an electron transfer reaction should minimally consist of a low-frequency classical solvent mode (X), a low-frequency vibrational mode (Q), and a high-frequency quantum mode (q) (J. Phys. Chem. 1991, 96, 3728). In the present work, a theoretical study of this model is described. This study generalizes earlier work by including the biphasic solvent response and the dynamics of the low-frequency vibrational mode in the presence of a delocalized, extended reaction zone. A novel Green's function technique has been developed which allowed us to study the non-Markovian dynamics on a multidimensional surface. The contributions from the high-frequency vibrational mode and the ultrafast component in the non-Markovian solvent dynamics are found to be primarily responsible for the dramatic increase in charge transfer rate over the prediction of the classical theories that neglect both these factors. These, along with a large coupling between the reactant and the product states, may combine to render the electron transfer rate both very large and constant over a wide range of solvent relaxation rates. A study on the free energy gap dependence of the electron transfer rate reveals that the rates are sensitive to changes in the quantum frequency particularly when the free energy gap is very large.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple but self-consistent microscopic theory for the time dependent solvation energy of both ions and dipoles is presented which includes, for the first time, the details of the self-motion of the probe on its own solvation dynamics. The theory leads to several interesting predictions. The most important of them is that, for dipolar solvation, both the rotational and the translational motions of the dipolar solute probe can significantly accelerate the rate of solvation. In addition, the rotational self-motion of the solute can also give rise to an additional mechanism of nonexponentiality in solvation time correlation functions in otherwise slow liquids. A comparison between the present theoretical predictions and the recent experimental studies of Maroncelli et al. on solvation dynamics of aniline in l-propanol seems to indicate that the said experiments have missed the initial solvent response up to about 45 ps. After mapping the experimental results on the redefined time scale, the theoretical results can explain the experimental results for solvation of aniline in 1-propanol very well. For ionic solvation, the translational motion is significant for light solutes only. For example, for Li+ in water, translational motion speeds up the solvation by about 20%. The present theory demonstrates that in dipolar solvation the partial quenching of the self-motion due to the presence of specific solute-solvent interactions (such as H-bonding) may lead to a much slower solvation than that when the self-motion is present. This point has been discussed. In addition, we present the theoretical results for solvation of aniline in propylene carbonate, Here, the solvation is predicted to be complete within 15-20 ps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lanthanide(II) complexes La(B)(acac)(3)] (1-3) and Gd(B)(acac)(3)] (4-6), where B is a N,N-donor phenanthroline base, viz., 1,10-phenanthroline (phen in 1, 4), dipyrido3,2-d:2',3'-f]quinoxaline (dpq in 2, 5) and dipyrido3,2-a:2',3'-c]phenazine (dppz in 3, 6), have been prepared and characterized. The Gd(111) complexes 4 6 are structurally characterized by single crystal X-ray crystallography. The complexes display GdO6N2 coordination with the ligands showing bidentate chelating mode of bonding. The complexes are non-electrolytic in aqueous DMF and exhibit ligand-centered absorption bands in the UV region. The dppz complexes show a band at 380 nm in DMF. The La(111) complexes are diamagnetic. The Gd(III) complexes are paramagnetic with magnetic moment that corresponds to seven unpaired electrons. The Complexes are avid binders to calf thymus DNA giving K-b values in the range of 4.7 x 10(4) 6.1 x 10(5) M-1 with a relative binding order: 3, 6 (dppz) > 2, 5 (dpq) > 1, 4 (phen). The binding data suggest DNA surface and/or groove binding nature of the complexes. The dpq and dppz complexes efficiently cleave SC DNA to its nicked circular form in UV-A light of 365 nm via formation of both singlet oxygen (O-1(2)) and hydroxyl radical (HO center dot) species. The dppz complexes 3 and 6 exhibit significant PDT effect in He La cervical cancer cells giving respective IC50 value of 460(+/- 50) and 530(+/- 30) nM in UV-A light of 365 rim, and are essentially non-toxic in dark with an IC50 value of >100 mu M. The dppz ligand alone is cytotoxic in dark and UV-A light. A significant decrease in the dark toxicity of the dppz base is observed on binding to the Ln(III) ion while retaining its photocytotoxicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eu3+ (8 mol%) activated gadolinium oxide nanorods have been prepared by hydrothermal method without and with surfactant, cityl trimethyl ammonium bromide (CTAB). Powder X-ray diffraction (PXRD) studies reveal that the as-formed product is in hexagonal Gd(OH)(3):Eu phase and subsequent heat treatment at 350 and 600 degrees C transforms the sample to monoclinic GdOOH:Eu and cubic Gd2O3:Eu phases, respectively. The structural data and refinement parameters for cubic Gd2O3:Eu nanorods were calculated by the Rietveld refinement. SEM and TEM micrographs show that as-obtained Gd(OH)(3):Eu consists of uniform nanorods in high yield with uniform diameters of about 15 nm and lengths of about 50-150 nm. The temperature dependent morphological evolution of Gd2O3:Eu without and with CTAB surfactant was studied. FTIR studies reveal that CTAB surfactant plays an important role in converting cubic Gd2O3:Eu to hexagonal Gd(OH)(3):Eu. The strong and intense Raman peak at 489 cm(-1) has been assigned to A(g) mode, which is attributed to the hexagonal phase of Gd2O3. The peak at similar to 360 cm(-1) has been assigned to the combination of F-g and E-g modes, which is mainly attributed to the cubic Gd2O3 phase. The shift in frequency and broadening of the Raman modes have been attributed to the decrease in crystallite dimension to the nanometer scale as a result of phonon confinement. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different phases of Eu3+ activated gadolinium oxide (Gd (OH)(3), GdOOH and Gd2O3) nanorods have been prepared by the hydrothermal method with and without cityl trimethyl ammonium bromide (GAB) surfactant. Cubic Gd2O3:Eu (8 mol%) red phosphor has been prepared by the dehydration of corresponding hydroxide Gd(OH)(3):Eu after calcinations at 350 and 600 degrees C for 3 h, respectively. When Eu3+ ions were introduced into Gd(OH)(3), lattice sites which replace the original Gd3+ ions, a strong red emission centered at 613 nm has been observed upon UV illumination, due to the intrinsic Eu3+ transition between D-5(0) and F-7 configurations. Thermoluminescence glow curves of Gd (OH)(3): Eu and Gd2O3:Eu phosphors have been recorded by irradiating with gamma source ((CO)-C-60) in the dose range 10-60 Gy at a heating rate of 6.7 degrees C sec(-1). Well resolved glow peaks in the range 42-45, 67-76,95-103 and 102-125 degrees C were observed. When gamma-irradiation dose increased to 40 Gy, the glow peaks were reduced and with increase in gamma-dose (50 and 60 Gy) results the shift in first two glow peak temperatures at about 20 degrees C and a new shouldered peak at 86 degrees C was observed. It is observed that there is a shift in glow peak temperatures and variation in intensity, which is mainly attributed to different phases of gadolinium oxide. The trapping parameters namely activation energy (E), order of kinetics (b) and frequency factor were calculated using peak shape and the results are discussed. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The standard Gibbs energies of formation of lanthanum orthoferrite (LaFeO3-delta) and hexaferrite (LaFe12O19)were determined using solid-state electrochemical cells incorporating yttria-stabilized zirconia as the electrolyte and pure oxygen gas at ambient pressure as the reference electrode. From emf of the solid-state cell, the Gibbs energy of formation of nonstoichiometric orthoferrite (LaFeO3-delta) is obtained. To derive values for the stoichiometric phase, variation of the oxygen nonstoichiometric parameter with oxygen partial pressure was measured using thermogravimetry under controlled gas mixtures. The results obtained for LaFeO3 and LaFe12O19 can be summarized by the following equations, which represent the formation of ternary oxides from their component binary oxides: 1/2 La2O3 + 1/2 Fe2O3 -> LaFeO3: Delta G degrees (LaFeO3) (+/- 450) (J mol(-1)) = -62920 - 2.12T (K), and 1/2 La2O3 + 9/2Fe(2)O(3) + Fe3O4 -> LaFe12O19; Delta G degrees (LaFe12O19) (+/- 200) (J mol(-1)) = -103900 + 21.25T (K). These data are discussed critically in comparison with thermodynamic values reported in the literature from a variety of measurements. The values obtained in this study are consistent with calorimetric entropy and enthalpy of formation of the perovskite phase and with some of the Gibbs energy measurements reported in the literature. For the lanthanum hexaferrite (LaFe12O19) there are no prior thermodynamic measurements for comparison. (c) 2011 Elsevier B.V. All rights reserved.