493 resultados para Laue crystallography
Resumo:
Plasmodium falciparum TIM (PfTIM) is unique in possessing a Phe residue at position 96 in place of the conserved Ser that is found in TIMs from the majority of other organisms. In order to probe the role of residue 96, three PfTIM mutants, F96S, F96H and F96W, have been biochemically and structurally characterized. The three mutants exhibited reduced catalytic efficiency and a decrease in substrate-binding affinity, with the most pronounced effects being observed for F96S and F96H. The k(cat) values and K-m values are (2.54 +/- 0.19) x 10(5) min(-1) and 0.39 +/- 0.049 mM, respectively, for the wild type; (3.72 +/- 0.28) x 10(3) min(-1) and 2.18 +/- 0.028 mM, respectively, for the F96S mutant;(1.11 +/- 0.03) x 10(4) min(-1) and 2.62 +/- 0.042 mM, respectively, for the F96H mutant; and (1.48 +/- 0.05) x 10(5) min(-1) and 1.20 +/- 0.056 mM, respectively, for the F96W mutant. Unliganded and 3-phosphoglycerate (3PG) complexed structures are reported for the wild-type enzyme and the mutants. The ligand binds to the active sites of the wild-type enzyme (wtPfTIM) and the F96W mutant, with a loop-open state in the former and both open and closed states in the latter. In contrast, no density for the ligand could be detected at the active sites of the F96S and F96H mutants under identical conditions. The decrease in ligand affinity could be a consequence of differences in the water network connecting residue 96 to Ser73 in the vicinity of the active site. Soaking of crystals of wtPfTIM and the F96S and F96H mutants resulted in the binding of 3PG at a dimer-interface site. In addition, loop closure at the liganded active site was observed for wtPfTIM. The dimer-interface site in PfTIM shows strong electrostatic anchoring of the phosphate group involving the Arg98 and Lys112 residues of PfTIM.
Resumo:
C13HlsN205 S, M r = 314.35, orthorhombic, P212121 with a = 39.526 (4), b = 6.607 (2), c = 5.661 (2) A, Z = 4, V = 1478.36 A 3, D c = 1.412 Mg m -3, Cu Ka radiation. Final R = 0.073 for 1154 observed counter reflections. The sulphur atom is in a pseudo-equatorial position with respect to the dihydrouracil ring. The sugar pucker is predominantly O(l')-exo unlike the C(3')-exo,C(4')-endo observed for 2',3' O-isopropylideneuridine (ISPU). The fivemembered dioxolane ring has C(7) displaced by 0.497 (7)A from the best plane through atoms 0(2'), C(2'), C(3'), 0(3'), in contrast to ISPU where 0(3') shows the maximum deviation.
Resumo:
C12HI6N206 is orthorhombic, P2x2121, with a = 19.890 (5), b = 12.789 (2), c = 5.236 (1) A, Z = 4, U = 1331.9/~ 3, F(000) = 600. Mo Ka (/~ = 0.123 mm -1) intensities for 940 unique reflections up to sin 0/2 = 0.538/k -1 were collected on a CAD-4 diffractometer. Final R = 0.034. The glycosidic torsion angle 2~CN is 3"4 °, significantly smaller than that (56.5 °) in 2',3'- -methoxymethyleneuridine (MMU). The ribose moiety has a C(3')-exo-C(4')-endo twist conformation, in contrast to the C(2')-endo conformation in MMU. However, the maximum amplitudes of pucker for the ribose and dioxolane rings are very nearly the same for the two structures. The conformation about C(4')-C(5') is gauche-gauche (~0oo = -68-4, Ooc = 51.3°).
Resumo:
Crystal structures of the title compounds, (I) and (II), have been determined by three-dimensional diffraction methods. Crystals of CsHIoN 4 (I) are monoclinic, space group P21/a with Z = 4, Mr= 162, a = 7.965 (1), b = 16.232 (2), c = 7.343 (1) A, fl = 113.54 (1) °, V = 890.7 A 3, D,n = 1.218, D x = 1.208 gcm -3, g(Cu Ka, 2 = 1.5418/~) = 6.47 em -1, F(000) = 344. The crystals of C9H12N4 (II) are orthorhombic, space group P21en, with Z = 4, Mr = 176, a = 7.983 (3), b = 8.075 (2), c = 14.652 (3) ./k, V = 944.43/~3, Dm= 1.219, D x = 1.237 g cm -3, #(Mo Ka, ). = 0.7107 ,/k) = 0.868 cm -1, F(000) = 376. Both structures were solved by direct methods and refined to R = 5.8% for (I) and 5.3 % for (II). The C-C double-bond distances are 1.407 (3) in (I) and 1.429 (6)/~ in (II), appreciably longer than normal. The steric and push-pull effects result in rotation about the C=C bond, the rotation angles being 20.2 (3) in (I) and 31.5 (6) o in (II).
Reinvestigation of the structure of Feist's acid 3-methylene-trans-1,2-cyclopropanedicarboxylic acid
Resumo:
C6H604, Mr = 142, triclinic, P[, a = 4.842(1), b = 7.607(1), c = 9.168 (3) A, ~ = 98.41(2), fl = 99.89(2), y = 77.74(1) ° , V = 320.9/k 3, Z = 2, Dm= 1.45 (flotation), D x = 1.470 g cm -3, p(Mo Ktt, 2 = 0.7107 A) = 0.63 cm -~, F(000) = 148. The structure was solved by direct methods and refined to an R value of 0.038 for 723 intensity measurements. The geometrical changes in the cyclopropane ring are discussed in the light of substituent effects. In the crystal structure the carboxylic groups are disordered.
Resumo:
The molecular conformation of the title compound, C20H17N3, is stabilized by an intramolecular C-H center dot center dot center dot N interaction. The crystal structure shows intermolecular C-H center dot center dot center dot pi interactions. The dihedral angle between the isoquinoline unit and the phenyl ring is 11.42 (1)degrees whereas the isoquinoline unit and the pendent dimethyl pryrazole unit form a dihedral angle of 50.1 (4)degrees. Furthermore, the angle between the mean plane of the phenyl ring and the dimethyl pyrazole unit is 47.3 (6)degrees.
Resumo:
In the title compound, C19H16ClNO2, the dihedral angle between the plane of the phenyl substituent and 3-acetylquinoline unit is 75.44 (5)degrees. The crystal structure is stabilized by intermolecular C-H center dot center dot center dot O hydrogen bonds.
Resumo:
C llH22 N 30 + . C2H302, orthorhombic, P2~2~2~, a = 5.511(2), b = 14.588(4), c = 21.109 (4)A, Z = 4. The structure has been solved using MULTAN and refined to R = 0.079 for 993 observed reflections. The fully extended lysine side chain in the molecule is staggered between the main-chain amino and carbonyl groups. The dipeptide molecules in the crystal structure are arranged in twofold helices centred on 21 screw axes. These helices are interconnected through interactions involving the acetate and the side-chain amino groups. Each acetate group bridges two adjacent side-chain amino groups, related by an a translation, giving rise to an infinitely long chain of alternating negatively charged carboxylate and positively charged amino groups.
Resumo:
C14Ht0F3NO2, P2.Jc, a = 12.523 (4), b = 7.868(6), c = 12.874 (3)A, fl = 95.2 (2) ° , O,,, = 1.47 (4), D e = 1.47 Mg m -3, Z = 4. Final R = 0.074 for 2255 observed reflections. The carboxyl group and the phenyl ring bearing the carboxyl group are nearly coplanar whereas the two phenyl rings are inclined with respect to each other at 52.8 ° . The difference between the two polymorphs of flufenamic acid lies in the geometrical disposition of the [3-(trifluoromethyl)- phenyl]amino moiety with respect to the benzoic acid moiety. As in other fenamate structures, the carboxyl group and the imino N atom are connected through an intramolecular hydrogen bond; also, pairs of centrosymmetrically related molecules are connected through hydrogen bonds involving carboxyl groups.
Resumo:
Oxyphenbutazone, C19H20N203, a metabolite and perhaps the active form of phenylbutazone, is a widely used non-narcotic analgesic and anti-inflammatory pyrazolidinedione derivative. The monohydrate of the compound crystallizes in the triclinic space group Pi with two molecules in a unit cell of dimensions a -- 9.491 (4), b = 10.261 (5), c = 11.036 (3)A and ¢~ = 72.2 (1), fl = 64.3 (1), 7 = 73.0 (1) °. The structure was solved by direct methods and refined to an R value of 0.107 for 1498 observed reflections. The butyl group in the molecule is disordered. The hydroxyl group occupies two sites with unequal occupancies. On account of the asymmetry at the two N atoms and one of the C atoms in the central five-membered ring, the molecule can exist in eight isomeric states, of which four are sterically unfavourable. The disorder in the position of the hydroxyl group can be readily explained on the basis of the existence, with unequal abundances, of all four sterically favourable isomers.The bond lengths and angles in the molecule are similar to those in phenylbutazone. The crystal structure is stabilized by van der Waals interactions, and O-H... O hydrogen bonds involving the carbonyl and the hydroxyl groups as well as a water molecule.
Resumo:
C17H19N302, monoclinic, P21, a = 5.382 (1), b = 17.534(4), c = 8.198(1)/L ,8 = 100.46(1) °, Z= 2, d,, = 1.323, dc= 1.299 Mg m-3, F(000) = 316, /~(Cu .Ka) = 0.618 mm -1. R = 0.052 for 1284 significant reflections. The proline-containing cispeptide unit which forms part of a six-membered ring deviates from perfect planarity. The torsion angle about the peptide bond is 3.0 (5) ° and the peptide bond length is 1.313 (5)A. The conformation of the proline ring is Cs-Cf~-endo. The crystal structure is stabilized by C-H... O interactions.