236 resultados para Laser resonance ionization
Resumo:
We report the surface laser damage threshold in sodium p-nitrophenolate dihydrate, a nonlinear optical crystal. The experiment is performed with a pulsed Nd:YAG laser in TEM00 mode. The single shot damage thresholds are 11.16 +/- 0.28GWcm(-2) and 1.25 +/- 0.02GWcm(-2) for 1064 nm and 532 nm laser wavelengths respectively. A close correlation between the laser damage threshold and mechanical hardness is observed. A possible mechanism of laser damage is discussed.
Resumo:
In a three player quantum `Dilemma' game each player takes independent decisions to maximize his/her individual gain. The optimal strategy in the quantum version of this game has a higher payoff compared to its classical counterpart. However, this advantage is lost if the initial qubits provided to the players are from a noisy source. We have experimentally implemented the three player quantum version of the `Dilemma' game as described by Johnson, [N.F. Johnson, Phys. Rev. A 63 (2001) 020302(R)] using nuclear magnetic resonance quantum information processor and have experimentally verified that the payoff of the quantum game for various levels of corruption matches the theoretical payoff. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
A creep resistant Mg alloy MRI 230D was subjected to laser surface treatment using Nd:YAG laser equipped with a fiber optics beam delivery system in argon atmosphere. The laser surface treatment produced a fine dendritic microstructure and this treatment was beneficial for the corrosion and wear resistance of the alloy. Long-term linear polarisation resistance and Electrochemical Impedance Spectroscopy measurements confirmed that the polarisation resistance values of laser treated material were twice as high as that for the untreated material. This improved behaviour was due to the finer and more homogenous microstructure of the laser treated surface. The laser treatment also increased surface hardness two times and reduced the wear rate by 25% due to grain refinement and solid solution strengthening.
Resumo:
Reactive Pulsed Laser Deposition is a single step process wherein the ablated elemental metal reacts with a low pressure ambient gas to form a compound. We report here a Secondary Ion Mass Spectrometry based analytical methodology to conduct minimum number of experiments to arrive at optimal process parameters to obtain high quality TiN thin film. Quality of these films was confirmed by electron microscopic analysis. This methodology can be extended for optimization of other process parameters and materials. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The formation of an ω-Al7Cu2Fe phase during laser cladding of quasicrystal-forming Al65Cu23.3Fe11.7 alloy on a pure aluminium substrate is reported. This phase is found to nucleate at the periphery of primary icosahedral-phase particles. A large number of ω-phase particles form an envelope around the icosahedral phase. On the outer side, they form an interface with an agr-Al solid solution. Detailed transmission electron microscopic observations show that the ω phase exhibits an orientation relationship with the icosahedral phase. Analysis of experimental results suggests that the ω phase forms by precipitation on an icosahedral phase by heterogeneous nucleation and grows into the aluminium-rich melt until supersaturation is exhausted. The microstructural observations are explained in terms of available models of phase transformations.
Resumo:
Coupled electromagnetically induced transparency (EIT) has been observed with a dual mode control laser. The technique can be used for generating EIT-comb from optical frequency comb.
Resumo:
Laser mediated stimulation of biological process was amongst its very first effects documented by Mester et al. but the ambiguous and tissue-cell context specific biological effects of laser radiation is now termed ‘Photobiomodulation’. We found many parallels between the reported biological effects of lasers and a multiface-ted growth factor, Transforming Growth Factor-β (TGF-β). This review outlines the interestingparallelsbetween the twofieldsand our rationalefor pursuingtheir potential causal correlation. We explored this correlation using an in vitro assay systems and a human clinical trial on healing wound extraction sockets that we reported in a recent publication. In conclusion we report that low power laser irradiation can activate latent TGF-β1 and β3 complexes and suggest that this might be one of the major modes of the photobiomodulatory effects of low power lasers.
Resumo:
The microstructural evolution of concentrated alloys is relatively less understood both in terms of experiments as well as theory. Laser resolidification represents a powerful technique to study the solidification behavior under controlled growth conditions. This technique has been utilized in the current study to probe experimentally microstructural selection during rapid solidification of concentrated Fe-25 atom pct Ge alloy. Under the equilibrium solidification condition, the alloy undergoes a peritectic reaction between ordered alpha(2) (B2) and its liquid, leading to the formation of ordered hexagonal intermetallic phase epsilon (DO19). In general, the as-cast microstructure consists of epsilon phase and e-p eutectic and alpha(2) that forms as a result of an incomplete peritectic reaction. With increasing laser scanning velocity, the solidification front undergoes a number of morphological transitions leading to the selection of the microstructure corresponding to metastable alpha(2)/beta eutectic to alpha(2) dendrite + alpha(2)/beta eutectic to alpha(2) dendrite. The transition velocities as obtained from the experiments are well characterized. The microstructural selection is discussed using competitive growth kinetics.
Resumo:
This paper deals with the manifestations of conical intersections (CIs), unequivocal spectroscopic signatures of which are still elusive, in the resonance Raman intensities. In particular, the results of our calculations on the `two state-two vibrational mode' and the `two state-three vibrational mode' models are presented. The models comprise two excited states of different spatial symmetry, one bright and one dark, which are coupled by a nontotally symmetric mode while the energy gap between them is tuned by one/two totally symmetric modes. Time dependent theory for vibronically coupled states is employed for the calculation and analysis of Raman excitation profiles (REPs). The manifestation of intersections in REPs is studied by extensive modelm calculations and the results of two specific models are presented. Themfeasibility of using REPs to probe the role of CIs in polyatomic systems is ascertained by multimode calculations on two polyatomic systems viz., pyrazine and trans-azobenzene. The study also notes the importance of the pump excitation wavelength dependence in a femtosecond time-resolved experiment probing the intersection-induced nonadiabatic dynamics. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Separated local field (SLF) spectroscopy is a powerful technique to measure heteronuclear dipolar couplings. The method provides site-specific dipolar couplings for oriented samples such as membrane proteins oriented in lipid bilayers and liquid crystals. A majority of the SLF techniques utilize the well-known Polarization Inversion Spin Exchange at Magic Angle (PISEMA) pulse scheme which employs spin exchange at the magic angle under Hartmann-Hahn match. Though PISEMA provides a relatively large scaling factor for the heteronuclear dipolar coupling and a better resolution along the dipolar dimension, it has a few shortcomings. One of the major problems with PISEMA is that the sequence is very much sensitive to proton carrier offset and the measured dipolar coupling changes dramatically with the change in the carrier frequency. The study presented here focuses on modified PISEMA sequences which are relatively insensitive to proton offsets over a large range. In the proposed sequences, the proton magnetization is cycled through two quadrants while the effective field is cycled through either two or four quadrants. The modified sequences have been named as 2(n)-SEMA where n represents the number of quadrants the effective field is cycled through. Experiments carried out on a liquid crystal and a single crystal of a model peptide demonstrate the usefulness of the modified sequences. A systematic study under various offsets and Hartmann-Hahn mismatch conditions has been carried out and the performance is compared with PISEMA under similar conditions.
Resumo:
Continuous CO2 laser welding of an Fe-Cu dissimilar couple in a butt-weld geometry at different process conditions is studied. The process conditions are varied to identify and characterize the microstructural features that are independent of the welding mode. The study presents a characterization of the microstructure and mechanical properties of the welds. Detailed microstructural analysis of the weld/base-metal interface shows features that are different on the two sides of the weld. The iron side can grow into the weld with a local change in length scale, whereas the interface on the copper side indicates a barrier to growth. The interface is jagged, and a banded microstructure consisting of iron-rich layers could be observed next to the weld/Cu interface. The observations suggest that solidification initiates inside the melt, where iron and copper are mixed due to convective flow. The transmission electron microscopy (TEM) of the weld region also indicates the occasional presence of droplets of iron and copper. The microstructural observations are rationalized using arguments drawn from a thermodynamic analysis of the Fe-Cu system.
Resumo:
A direct observation of ferroelectric domains in x-irradiated KH2AsO4 and KD2AsO4 using electron paramagnetic resonance (EPR), and in the case of KH2AsO4 also using electron-nuclear double-resonance (ENDOR), is reported. The nature of the observed domain splittings and consequently the effects of an externally applied electric field on the EPR and ENDOR spectra are explained. Moreover, the higher resolution possible with the ENDOR technique, has, for the first time, made it possible to use protons as microscopic probes and to identify in general lines from individual domains in all directions.
Resumo:
The proton magnetic resonance spectra of single crystals of Na2Zn(SO4)2·4H2O have been investigated and the orientations of the water molecules have been determined. Using the heavy atom structure determined by X-rays a system of hydrogen bonds between water and sulphate oxygens has been proposed.