278 resultados para Laguerre orthogonal polynomials
Resumo:
Sequence design problems are considered in this paper. The problem of sum power minimization in a spread spectrum system can be reduced to the problem of sum capacity maximization, and vice versa. A solution to one of the problems yields a solution to the other. Subsequently, conceptually simple sequence design algorithms known to hold for the white-noise case are extended to the colored noise case. The algorithms yield an upper bound of 2N - L on the number of sequences where N is the processing gain and L the number of non-interfering subsets of users. If some users (at most N - 1) are allowed to signal along a limited number of multiple dimensions, then N orthogonal sequences suffice.
Resumo:
The Orthogonal Frequency Division Multiplexing (OFDM) is a form of Multi-Carrier Modulation where the data stream is transmitted over a number of carriers which are orthogonal to each other i.e. the carrier spacing is selected such that each carrier is located at the zeroes of all other carriers in the spectral domain. This paper proposes a new novel iterative frequency offset estimation algorithm for an OFDM system in order to receive the OFDM data symbols error-free over the noisy channel at the receiver and to achieve frequency synchronization between the transmitter and the receiver. The performance of this algorithm has been studied in AWGN, ADSL and SUI channels successfully.
Resumo:
The Orthogonal Frequency Division Multiplexing (OFDM) is a form of Multi-Carrier Modulation where the data stream is transmitted over a number of carriers which are orthogonal to each other i.e. the carrier spacing is selected such that each carrier is located at the zeroes of all other carriers in the spectral domain. This paper proposes a new novel sampling offset estimation algorithm for an OFDM system in order to receive the OFDM data symbols error-free over the noisy channel at the receiver and to achieve fine timing synchronization between the transmitter and the receiver. The performance of this algorithm has been studied in AWGN, ADSL and SUI channels successfully.
Resumo:
It is known that by employing space-time-frequency codes (STFCs) to frequency selective MIMO-OFDM systems, all the three diversity viz spatial, temporal and multipath can be exploited. There exists space-time-frequency block codes (STFBCs) designed using orthogonal designs with constellation precoder to get full diversity (Z.Liu, Y.Xin and G.Giannakis IEEE Trans. Signal Processing, Oct. 2002). Since orthogonal designs of rate one exists only for two transmit antennas, for more than two transmit antennas STFBCs of rate-one and full-diversity cannot be constructed using orthogonal designs. This paper presents a STFBC scheme of rate one for four transmit antennas designed using quasi-orthogonal designs along with co-ordinate interleaved orthogonal designs (Zafar Ali Khan and B. Sundar Rajan Proc: ISIT 2002). Conditions on the signal sets that give full-diversity are identified. Simulation results are presented to show the superiority of our codes over the existing ones.
Resumo:
This paper proposes a control method that can balance the input currents of the three-phase three-wire boost rectifier under unbalanced input voltage condition. The control objective is to operate the rectifier in the high-power-factor mode under balanced input voltage condition but to give overriding priority to the current balance function in case of unbalance in the input voltage. The control structure has been divided into two major functional blocks. The inner loop current-mode controller implements resistor emulation to achieve high-power-factor operation on each of the two orthogonal axes of the stationary reference frame. The outer control loop performs magnitude scaling and phase-shifting operations on current of one of the axes to make it balanced with the current on the other axis. The coefficients of scaling and shifting functions are determined by two closed-loop prportional-integral (PI) controllers that impose the conditions of input current balance as PI references. The control algorithm is simple and high performing. It does not require input voltage sensing and transformation of the control variables into a rotating reference frame. The simulation results on a MATLAB-SIMULINK platform validate the proposed control strategy. In implementation Texas Instrument's digital signal processor TMS320F24OF is used as the digital controller. The control algorithm for high-power-factor operation is tested on a prototype boost rectifier under nominal and unbalanced input voltage conditions.
Resumo:
Sequence design and resource allocation for a symbol-asynchronous chip-synchronous code division multiple access (CDMA) system is considered in this paper. A simple lower bound on the minimum sum-power required for a non-oversized system, based on the best achievable for a non-spread system, and an analogous upper bound on the sum rate are first summarised. Subsequently, an algorithm of Sundaresan and Padakandla is shown to achieve the lower bound on minimum sum power (upper bound on sum rate, respectively). Analogous to the synchronous case, by splitting oversized users in a system with processing gain N, a system with no oversized users is easily obtained, and the lower bound on sum power (upper bound on sum rate, respectively) is shown to be achieved by using N orthogonal sequences. The total number of splits is at most N - 1.
Resumo:
The Orthogonal Frequency Division Multiplexing (OFDM) is a form of Multi-Carrier Modulation where the data stream is transmitted over a number of carriers which are orthogonal to each other i.e. the carrier spacing is selected such that each carrier is located at the zeroes of all other carriers in the spectral domain. This paper proposes a new novel sampling offset estimation algorithm for an OFDM system in order to receive the OFDM data symbols error-free over the noisy channel at the receiver and to achieve fine timing synchronization between the transmitter and the receiver. The performance of this algorithm has been studied in AWGN, ADSL and SUI channels successfully.
Resumo:
The electron spin resonance in undiluted single crystals of cupric acid fluoride has been investigated at room temperature with microwaves of frequency 9625 Mc/s. The anisotropy in the g value has been measured in three orthogonal planes. The principal g values gave gshort parallel = 2.410 ± 0.010, gperpendicular = 2.090 ± 0.010. The linewidth shows anisotropy with orientation. The exchange frequency has been estimated to be approximately 0.08 cm-1.The powdered specimen shows asymmetry in the line shape.
Resumo:
In the structure of the title compound, C27H39N3O3, each of the (4-oxopiperidin-1-yl)methyl residues adopts a flattened chair conformation (with the N and carbonyl groups being oriented to either,side of the central C-4 plane) and they occupy positions approximatelym orthogonal to the central benzene ring [C-benzene-C-C-methylene-N torsion angles 103.4 (2), -104.4 (3) and 71.9 (3)degrees]; further, two of these residues are oriented to one side of the central benzene ring with the third to the other side. In the crystal packing, supramolecular layers in the ab plane are sustained by C-H center dotcenter dot center dot O interactions.
An approximate analysis of non-linear non-conservative systems subjected to step function excitation
Resumo:
This paper deals with the approximate analysis of the step response of non-linear nonconservative systems by the application of ultraspherical polynomials. From the differential equations for amplitude and phase, set up by the method of variation of parameters, the approximate solutions are obtained by a generalized averaging technique based on ultraspherical polynomial expansions. The Krylov-Bogoliubov results are given by a particular set of these polynomials. The method has been applied to study the step response of a cubic spring mass system in presence of viscous, material, quadratic, and mixed types of damping. The approximate results are compared with the digital and analogue computer solutions and a close agreement has been found between the analytical and the exact results.
Resumo:
The variety of electron diffraction patterns arising from the decagonal phase has been explored using a stereographic analysis for generating the important zone axes as intersection points corresponding to important relvectors. An indexing scheme employing a set of five vectors and an orthogonal vector has been followed. A systematic tilting from the decagonal axis to one of the twofold axes has been adopted to generate a set of experimental diffraction patterns corresponding to the expected patterns from the stereographic analysis with excellent agreement.
Resumo:
In uplink orthogonal frequency division multiple access (OFDMA) systems, multiuser interference (MUI) occurs due to different carrier frequency offsets (CFO) of different users at the receiver. In this paper, we present a minimum mean square error (MMSE) based approach to MUI cancellation in uplink OFDMA. We derive a recursion to approach the MMSE solution. We present a structure-wise and performance-wise comparison of this recursive MMSE solution with a linear PIC receiver as well as other detectors recently proposed in the literature. We show that the proposed recursive MMSE solution encompasses several known detectors in the literature as special cases.
Resumo:
It is well known that Alamouti code and, in general, Space-Time Block Codes (STBCs) from complex orthogonal designs (CODs) are single-symbol decodable/symbolby-symbol decodable (SSD) and are obtainable from unitary matrix representations of Clifford algebras. However, SSD codes are obtainable from designs that are not CODs. Recently, two such classes of SSD codes have been studied: (i) Coordinate Interleaved Orthogonal Designs (CIODs) and (ii) Minimum-Decoding-Complexity (MDC) STBCs from Quasi-ODs (QODs). In this paper, we obtain SSD codes with unitary weight matrices (but not CON) from matrix representations of Clifford algebras. Moreover, we derive an upper bound on the rate of SSD codes with unitary weight matrices and show that our codes meet this bound. Also, we present conditions on the signal sets which ensure full-diversity and give expressions for the coding gain.
Resumo:
Space-Time Block Codes (STBCs) from Complex Orthogonal Designs (CODs) are single-symbol decodable/symbol-by-symbol decodable (SSD); however, SSD codes are obtainable from designs that are not CODs. Recently, two such classes of SSD codes have been studied: (i) Coordinate Interleaved Orthogonal Designs (CIODs) and (ii) Minimum-Decoding-Complexity (MDC) STBCs from Quasi-ODs (QODs). The class of CIODs have non-unitary weight matrices when written as a Linear Dispersion Code (LDC) proposed by Hassibi and Hochwald, whereas the other class of SSD codes including CODs have unitary weight matrices. In this paper, we construct a large class of SSD codes with nonunitary weight matrices. Also, we show that the class of CIODs is a special class of our construction.
Resumo:
Two dimensional Optical Orthogonal Codes (OOCs) named Wavelength/Time Multiple-Pulses-per-Row (W/T MPR) codes suitable for use in incoherent fiber-optic code division multiple access (FO-CDMA) networks are reported in [6]. In this paper, we report the construction of W/T MPR codes, using Greedy Algorithm (GA), with distinct 1-D OOCs [1] as the row vectors. We present the W/T MPR codes obtained using the GA. Further, we verify the correlation properties of the generated W/T MPR codes using Matlab.