239 resultados para LINKED POLY(EPSILON-CAPROLACTONE)
Resumo:
Polyphosphate esters have been used as polymeric flame retardant plasticizers in poly(vinyl chloride); thermal and flammability studies were carried out to evaluate their efficiencies as fire retardants. A comparison is also made on the fire retardancy of the conventional simple phosphates with that of the polyphosphates as novel fire retardant plasticizers for PVC.
Resumo:
The reaction of silicon tetrachloride (SiCl4), trichlorosilane (HSiCl3) and tris(amino)silanes[(R2N)3SiH] with pyridinium poly(hydrogen fluoride) (PPHF) gives rise to hexafluorosilicatesalts in good yields. They have been characterized as pyridinium hexafluorosilicate(C5H5NH)2SiF6 (in the case of SiCl4 and HSiCl3) and the corresponding dialkyl ammoniumhexafluorosilicate (R2NH2)2SiF6 salts [for tris(amino)silanes] (where R2N=pyrrolidino,piperidino, hexamethyleneimino, morpholino, N-methylpiperazino and diethylamino). Theinteresting features of these reactions are the cleavage of Si---Cl, Si---H and Si---N bondsat room temperature by PPHF and fluorination of the silicon moiety to a hexa-coordinateddoubly charged anionic species. These compounds have been characterized by NMR (1H,29Si, 19F) and IR spectroscopy, and by chemical analysis.
Resumo:
The preponderance of 3'-5' phosphodiester links in nucleic acids is well known. Albeit less prevalent, the 2'-5' links are specifically utilised in the formation of 'lariat' in group II introns and in the msDNA-RNA junction in myxobacterium. As a sequel to our earlier study on cytidylyl-2',5'-adenosine we have now obtained the crystal structure of adenylyl-2',5'-adenosine (A2'p5'A) at atomic resolution. This dinucleoside monophosphate crystallizes in the orthorhombic space group P2(1)2(1)2(1) with a = 7.956(3) A, b = 12.212(3) A and c = 36.654(3) A. CuK alpha intensity data were collected on a diffractometer. The structure was sloved by direct methods and refined by full matrix least squares methods to R = 10.8%. The 2' terminal adenine is in the commonly observed anti (chi 2 = 161 degrees) conformation and the 5' terminal base has a syn (chi 1 = 55 degrees) conformation more often seen in purine nucleotides. A noteworthy feature of A2'p5'A is the intranucleotide hydrogen bond between N3 and O5' atoms of the 5' adenine base. The two furanose rings in A2'p5'A show different conformations - C2' endo, C3' endo puckering for the 5' and 2' ends respectively. In this structure too there is a stacking of the purine base on the ribose O4' just as in other 2'-5' dinucleoside structures, a feature characteristically seen in the left handed Z DNA. In having syn, anti conformation about the glycosyl bonds, C2' endo, C3' endo mixed sugar puckering and N3-O5' intramolecular hydrogen bond A2'p5'A resembles its 3'-5' analogue and several other 2'-5' dinucleoside monophosphate structures solved so far. Striking similarities between the 2'-5' dinucleoside monophosphate structures suggest that the conformation of the 5'-end nucleoside dictates the conformation of the 2' end nucleoside. Also, the 2'-5' dimers do not favour formation of miniature classical double helical structures like the 3'-5' dimers. It is conceivable, 2-5(A) could be using the stereochemical features of A2'p5'A which accounts for its higher activity.
Resumo:
Poly(ethylene-co-vinyl acetate) (EVA) films were irradiated with a 1.2MeV electron beam at varied doses over the range 0-270kGy in order to investigate the modifications induced in its optical, electrical and thermal properties. It was observed that optical band gap and activation energy of EVA films decreased upon electron irradiation, whereas the transition dipole moment, oscillator strength and number of carbon atoms per cluster were found to increase upon irradiation. Further, the dielectric constant, the dielectric loss, and the ac conductivity of EVA films were found to increase with an increase in the dose of electron radiation. The result further showed that the thermal stability of EVA film samples increased upon electron irradiation.
Resumo:
We demonstrate that the structural and optical properties of a sol-gel deposited zinc oxide thin film can be tuned by varying the composition of the sol, consisting of ethylene glycol and glycerol. A systematic study of the effect of the composition of sol on the mean grain size, thickness, and defect density of the zinc oxide film is presented. About 20% glycerol content in the sol is observed to improve the quality of the film, as evaluated by X-ray diffraction and photoluminescence studies. Thus, optimizing the composition of the sol for about 60 nm thick ZnO film using 20% glycerol resulted in the zinc oxide film that is about 80% transparent in visible spectrum, exhibiting electrical resistivity of about 18 Omega cm and field-effect mobility of 0.78 cm(2)/(V s). (C) 2010 The Electrochemical Society. DOI: 10.1149/1.3515894] All rights reserved.
Resumo:
A strategy for the modular construction of synthetic protein mimics based on the ability non-protein amino acids to act as stereochemical directors of polypeptide chain folding, is described. The use of alpha-aminoisobutyric acid (Aib) to construct stereochemically rigid helices has been exemplified by crystallographic and spectroscopic studies of several apolar peptides, ranging in length from seven to sixteen residues. The problem of linker design in elaborating alpha,alpha motifs has been considered. Analysis of protein crystal structure data provides a guide to choosing linking sequences. Attempts at constructing linked helical motifs using linking Gly-Pro segments have been described. The use of flexible linkers, like epsilon-aminocaproic acid has been examined and the crystallographic and solution state analysis of a linked helix motif has been presented. The use of bulky sidechain modifications on a helical scaffold, as a means of generating putative binding sites has been exemplified by a crystal structure of a peptide packed in a parallel zipper arrangement.
Resumo:
We report second harmonic generation in a new class of organic materials, namely donor-acceptor substituted all-trans butadienes doped in poly(methyl methacrylate) or polystyrene and oriented by corona poling at elevated temperatures. Second harmonic measurements were made at room temperature. The observed d33 coefficients are greater than those of potassium dihydrogen phosphate or 4-dimethylamino-4'-nitrostilbene doped in similar polymer matrices. Rotational diffusion coefficients estimated from the decay characteristics of the second harmonic intensity in the polymer films indicate that the polymer matrix plays a major role in stabilizing the dopants in a nonlinear optics conducive environment.
Resumo:
In order to study the efficiencies of catalytic moieties within and across dendrimer generations, partially and fully functionalized dendrimers were synthesized. Poly(alkyl aryl ether) dendrimers from zero to three generations, presenting 3 to 24 peripheral functionalities, were utilized to prepare as many as 12 catalysts. The dendrimer peripheries were partially and fully functionalized with triphenylphosphine in the first instance. A rhodium(I) metal complexation was performed subsequently to afford multivalent dendritic catalysts, both within and across generations. Upon synthesis, the dendritic catalysts were tested in the hydrogenation of styrene, in a substrate-to-catalyst ratio of 1:0.001. Turn-over-numbers were evaluated for each catalyst, from which significant increases in the catalytic activities were identified for multivalent catalysts than monovalent catalysts, both within and across generations. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The nonviral vector based gene delivery approach is attractive due to advantages associated with molecular-level modifications suitable for optimization of vector properties. In a new class of nonviral gene delivery systems, we herein report the potential of poly(ether Mine) (PETIM) dendrimers to mediate an effective gene delivery function. PETIM dendrimer, constituted with tertiary amine branch points, n-propyl ether linkers and primary amines at their peripheries, exhibits significantly reduced toxicities, over a broad concentration range. The dendrimer complexes pDNA effectively, protects DNA from endosomal damages, and delivers to the cell nucleus. Gene transfection studies, utilizing a reporter plasmid pEGFP-C1 and upon complexation with dendrimer, showed a robust expression of the encoded protein. The study shows that PETIM dendrimers are hitherto unknown novel gene delivery vectors, combining features of poly(ethylene imine)-based polymers and dendrimers, yet are relatively nontoxic and structurally precise.
Resumo:
Studies of the reaction of metal chlorides, MCl2 (M = Mn, Co, Ni, Cu, Zn) with PPHF at room temperature have shown that Mn, Co and Zn form the corresponding metal fluorides, MF2, while Ni and Cu form their dipyridine metal(II) dichloride complexes. Nickel and copper complexes further undergo fluorination and complexation by potassium hydrogen fluoride in PPHF to form KNiF3 and KCuF3.
Resumo:
Miscibilities of some poly[aromatic (meth)acrylatels namely, poly(pheny1 acrylate) (PPA), poly(pheny1 methacrylate) (PPMA), poly(benzy1 acrylate) (PBA), and poly(benzy1 methacrylate) (PBMAY polystyrene blends, have been studied through the so-called copolymer effect by incorporating acrylonitrile units in PS chains. In these systems, miscibility occurs on account of the strong repulsion between the acrylonitrile and styrene units in the copolymer. PBA and PBMA were blended with different styreneacrylonitrile (SAN) copolymers. A miscibility window has been identified for the latter system, and from these limits, the binary interaction energy density parameters (B,j.’sw) ere calculated. Using these values, the miscibilities in other homopolymer-copolymer and copolymer-copolymer systems containing benzyl methacrylate, acrylonitrile, and styrene monomer units have been predicted and subsequently verified experimentally. The miscibility window limits in poly[aromatic (meth)acrylate]s/SAN copolymer blends have been compared. PBA does not exhibit a miscibility window with SAN copolymers, which has been explained by the weak intramolecular hydrogen bonding in PBA. The miscibility window in the PBW SAN copolymer system, as observed by DSC, shows a considerable narrowing in nonradiative energy transfer (NRET) measurements, as this technique is more sensitive.
Resumo:
Miscibilities of some poly[aromatic (meth)crylate]s namely, poly(phenyl acrylate) (PPA, poly(phenyl methacrylate) (PPMA), poly(benzyl acrylate) (PBA), and poly(benzyl methacrylate) (PBMA)/polystyrene blends, have been studied through the so-called copolymer effect by incorporating acrylonitrile units in PS chains. In these systems, miscibility occurs on account of the strong repulsion between the acrylonitrile and styrene units in the copolymer. PBA and PBMA were blended with different styrene-acrylonitrile (SAN) copolymers. A miscibility window has been identified for the latter system, and from these limits, the binary interaction energy density parameters (Bij's) were calculated. Using these values, the miscibilities in other homopolymer-copolymer and copolymer-copolymer systems containing benzyl methacrylate, acrylonitrile, and styrene monomer units have been predicted and subsequently verified experimentally. The miscibility window limits in poly[aromatic (meth)acrylate]s/SAN copolymer blends have been compared. PBA does not exhibit a miscibility window with SAN copolymers, which has been explained by the weak intramolecular hydrogen bonding in PBA. The miscibility window in the PBMA/SAN copolymer system, as observed by DSC, shows a considerable narrowing in nonradiative energy transfer (NRET) measurements, as this technique is more sensitive.
Resumo:
The thermal degradation products of two sulfur polymers, poly(styrenedisulfide) (PSD) and poly(styrenetetrasulfide) (PST), were investigated in parallel by direct pyrolysis-mass spectrometry (DPMS) and by flash pyrolysis-GC/MS (Py-GC/MS). The time-scale of the two pyrolysis techniques is quite different, and therefore they were able to detect significantly different products in the pyrolysis of PSD and PST because of the thermal lability of sulfur-containing compounds. However, the results obtained are not contradictory, and satisfactory mechanisms for the thermal degradation of PSD and PST have been derived from the overall evidence available. Pyrolysis compounds containing sulfur, styrene, and a number of cyclic styrene sulfides and diphenyldithianes have been observed by DPMS. However, in flash pyrolysis-GC/MS, styrene, sulfur, only one cyclic styrene sulfide, and two isomers of diphenylthiophene have been detected. These thiophene derivatives were indeed absent among the compounds obtained by DPMS because they were the terminal (most thermally stable) species arising from further decomposition of the cyclic styrene sulfides formed in the primary thermal degradation processes of PSD and PST.
Resumo:
Time-resolved fluorescence studies were carried out on a series of free-base and zinc(II) derivatives of meso-tetraphenylporphyrins covalently linked to either 1,3-dinitrobenzene (DNB) or 1,3,5-trinitrobenzene (TNB) acceptor units. These acceptor units were linked at different sites (at the ortho, meta or para positions of one of the phenyl groups of meso-tetraphenylporphyrin) to the donor porphyrins such that the resulting isomeric intramolecular donor-acceptor complexes exhibit different centre-to-centre (ctc) distances and relative orientations. Biexponential fluorescence decay profiles observed for several of these covalently linked complexes were rationalized in terms of the presence of ''closed'' and ''extended'' conformers. Detailed analyses of the fluorescence decay data have provided a comprehensive understanding of the photoinduced electron transfer (PET) reactions occurring in systems containing zinc(II) porphyrin donors. It is observed that although DNB-linked zinc(II) complexes follow the trends predicted for the efficiency of PET with respect to donor-acceptor distance, the TNB-linked zinc(II) porphyrins exhibit a behaviour which is dictated by steric effects. Similarly, although the thermodynamic criteria predict a greater efficiency of charge separation in TNB-linked complexes compared with DNB-linked complexes, the reverse trend observed has been attributed to orientational effects. In the complexes containing free-base porphyrin donors, PET is expected to be less efficient from a thermodynamic viewpoint. In a few of these cases, fluorescence quenching seems to occur by parallel mechanisms other than PET.
Resumo:
We describe the use of poly(alpha-methylstyrene peroxide) (P alpha MSP), an alternating copolymer of alpha-methylstyrene and oxygen, as initiator for the radical polymerization of vinyl monomers. Thermal decomposition of P alpha MSP in 1,4-dioxane follows first-order kinetics with an activation energy (E(a)) of 34.6 kcal/mol. Polymerization of methyl methacrylate (MMA) and styrene using P alpha MSP as an initiator was carried out in the temperature range 60-90 degrees C. The kinetic order with respect to the initiator and the monomer was close to 0.5 and 1.0, respectively, for both monomers. The E(a) for the polymerization was 20.6 and 22.9 kcal/mol for MMA and styrene, respectively. The efficiency of P alpha MSP was found to be in the range 0.02-0.04. The low efficiency of P alpha MSP was explained in terms of the unimolecular decomposition of the alkoxy radicals which competes with primary radical initiation. The presence of peroxy segments in the main chain of PMMA and polystyrene was confirmed from spectroscopic and DSC studies. R(i)'/2I values for P alpha MSP compared to that of BPO at 80 degrees C indicate that P alpha MSP can be used as an effective high-temperature initiator.