113 resultados para Individualized controlled ovarian stimulation
Resumo:
Hollow nanomaterials have attracted a lot of interest by virtue of their wide range of applications that arise primarily due to their unique architecture. A common strategy to synthesize hollow nanomaterials is by nucleation of the shell material over a preformed core and subsequent dissolution of the core in the second step. Herein an ultrafast, microwave route has been demonstrated, to synthesize PdO nanotubes in a single step using ZnO as a sacrificial template. The mechanism of the nanotube formation has been investigated in detail using control experiments. By tuning the starting ratio of PdCl2 : ZnO, hollow to hybrid PdO nanostructures could be obtained using the same method. Conversion of the PdO to Pd nanotubes has been shown by simple NaBH4 treatment. The thermal stability of the PdO nanotubes has been studied. The insights presented here are general and applicable for the synthesis of hybrids/hollow structures in other systems as well.
Resumo:
Unlike conventional polymeric drug delivery systems, where drugs are entrapped in polymers, this study focuses on the incorporation of the drug into the polymer backbone to achieve higher loading and sustained release. Crosslinked, biodegradable, xylitol based polyesters have been synthesized in this study. The bioactive drug moiety, p-aminosalicylic acid (PAS), was incorporated in xylitol based polyesters to impart its anti-mycobacterial activity. To understand the influence of the monomer chemistry on the incorporation of PAS and its subsequent release from the polymer, different diacids have been used. Controlled release profiles of the drug from these polyesters were studied under normal physiological conditions. The degradation of the polyesters varied from 48% to 76% and the release of PAS ranged from 54% to 65% of its initial loading in 7 days. A new model was developed to explain the release kinetics of PAS from the polymer that accounted for the polymer degradation and drug concentration. The thermal, mechanical, drug release and cytocompatibility properties of the polymers indicate their suitability in biomedical applications. The released products from these polymers were observed to be pharmacologically active against Mycobacteria. The high drug loading and sustained release also ensured enhanced efficacy. These polymers form biocompatible, biodegradable polyesters where the sustained release of PAS may be tailored for potential treatment of mycobacterial infections. Statement of significance In the present work, we report on novel polyesters with p-aminosalicylic acid (PAS) incorporated in the polymer backbone. The current work aims to achieve controlled release of PAS and ensures the delivered PAS is stable and pharmacologically active. The novelty of this work primarily involves the synthetic chemistry of polymerization and detailed analysis and efficacy of active PAS delivery. A new kinetic model has been developed to explain the PAS release profiles. These polymers are biodegradable, cytocompatible and anti-mycobacterial in nature. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
A strong influence of Ni content on the diffusion-controlled growth of the (Cu,Ni)(3)Sn and (Cu,Ni)(6)Sn-5 phases by coupling different Cu(Ni) alloys with Sn in the solid state is reported. The continuous increase in the thickness ratio of (Cu,Ni)(6)Sn-5 to (Cu,Ni)(3)Sn with the Ni content is explained by combined kinetic and thermodynamic arguments as follows: (i) The integrated interdiffusion coefficient does not change for the (Cu,Ni)(3)Sn phase up to 2.5 at.% Ni and decreases drastically for 5 at.% Ni. On the other hand, there is a continuous increase in the integrated interdiffusion coefficient for (Cu,Ni)(6)Sn-5 as a function of increasing Ni content. (ii) With the increase in Ni content, driving forces for the diffusion of components increase for both components in both phases but at different rates. However, the magnitude of these changes alone is not large enough to explain the high difference in the observed growth rate of the product phases because of Ni addition. (iv) Kirkendall marker experiments indicate that the Cu6Sn5 phase grows by diffusion of both Cu and Sn in the binary case. However, when Ni is added, the growth is by diffusion of Sn only. (v) Also, the observed grain refinement in the Cu6Sn5 phase with the addition of Ni suggests that the grain boundary diffusion of Sn may have an important role in the observed changes in the growth rate.
Resumo:
Poly(vinylidene difluoride), a well-known candidate for artificial muscle patch applications is a semi-crystalline polymer with a host of attributes such as piezo- and pyroelectricity, polymorphism along with low dielectric constant and stiffness. The present work explores the unique interplay among the factors (conductivity, polymorphism and electrical stimulation) towards cell proliferation on poly(vinylidene difluoride) (PVDF)-based composites. In this regard, multi-walled carbon nanotubes (MWNTs) are introduced in the PVDF matrix (limited to 2%) through melt mixing to increase the conductivity of PVDF. The addition of MWNTs also led to an increase in the fraction of piezoelectric beta-phase, tensile strength and modulus. The melting and crystallization behaviour of PVDF-MWNT together with FT-IR confirms that the crystallization is found to be aided by the presence of MWNT. The conducting PVDF-MWNTs are used as substrates for the growth of C2C12 mouse myoblast cells and electrical stimulation with a range of field strengths (0-2 V cm(-1)) is intermittently delivered to the cells in culture. The cell viability results suggest that metabolically active cell numbers can statistically increase with electric stimulation up to 1 V cm(-1), only on the PVDF + 2% MWNT. Summarising, the current study highlights the importance of biophysical cues on cellular function at the cell-substrate interface. This study further opens up new avenues in designing conducting substrates, that can be utilized for enhancing cell viability and proliferation and also reconfirms the lack of toxicity of MWNTs, when added in a tailored manner.
Resumo:
A ligand controlled selective hydroborylation of alkynes to alpha- or beta-vinylboronates has been developed using a Pd catalyst. The high alpha-selectivity displayed by this reaction can be switched to furnish beta-vinylboronates by altering the ligand from a trialkylphosphine to N-heterocyclic carbene. A variety of terminal alkynes are shown to furnish the corresponding alpha- or beta-vinylboronates in good to excellent selectivity and yield. The mechanistic studies suggest that the solvent is the proton source and bromobenzene functions as an important additive in driving this reaction forward.
Resumo:
We report here the first general method for the geminal diamination and an intermolecular metal-free, geminal aminooxygenation of vinylarenes using hypervalent iodine reagent. A new m-CPBA mediated geminal aminooxygenation is also reported. A novel reagent-switch for the control of migrating group by controlling the two independent geminal addition paths is developed. Deuterium labelling studies and the control studies have provided unambiguous evidences for the phenyl migration and hydride migration in the oxidative geminal difunctionalization process mediated by Phl(OCOCF3)(2) and m-CPBA, respectively through a semi-pinacol rearrangement. (C) 2016 Elsevier Ltd. All rights reserved.
Resumo:
A ligand controlled selective hydroborylation of alkynes to alpha- or beta-vinylboronates has been developed using a Pd catalyst. The high alpha-selectivity displayed by this reaction can be switched to furnish beta-vinylboronates by altering the ligand from a trialkylphosphine to N-heterocyclic carbene. A variety of terminal alkynes are shown to furnish the corresponding alpha- or beta-vinylboronates in good to excellent selectivity and yield. The mechanistic studies suggest that the solvent is the proton source and bromobenzene functions as an important additive in driving this reaction forward.
Resumo:
This paper investigates possible reduction of pulsating torque in open-loop and vector-controlled induction motor drives through deployment of certain advanced bus-clamping pulsewidth modulation (ABCPWM) method. Toward this goal, a simple and machine-independent method is proposed to analyze the torque harmonic spectrum of a voltage source inverter fed induction motor, operated with any real-time pulsewidth modulation (PWM) method. The analytically evaluated torque harmonic spectra, pertaining to conventional space vector PWM (CSVPWM), bus-clamping PWM (BCPWM), and ABCPWM, are validated through simulation and experimental results. Theoretical and experimental studies bring out the superiority of the ABCPWM in terms of torque harmonics over CSVPWM and BCPWM. The magnitude of the dominant torque harmonic with the ABCPWM scheme is shown to be significantly lower than that with CSVPWM, over a wide range of speed. The rms torque ripple (i.e., total rms value of all harmonic torques) is lower with ABCPWM than with BCPWM over the entire range of speed.