115 resultados para Image-based cytometry
Resumo:
To perform super resolution of low resolution images, state-of-the-art methods are based on learning a pair of lowresolution and high-resolution dictionaries from multiple images. These trained dictionaries are used to replace patches in lowresolution image with appropriate matching patches from the high-resolution dictionary. In this paper we propose using a single common image as dictionary, in conjunction with approximate nearest neighbour fields (ANNF) to perform super resolution (SR). By using a common source image, we are able to bypass the learning phase and also able to reduce the dictionary from a collection of hundreds of images to a single image. By adapting recent developments in ANNF computation, to suit super-resolution, we are able to perform much faster and accurate SR than existing techniques. To establish this claim, we compare the proposed algorithm against various state-of-the-art algorithms, and show that we are able to achieve b etter and faster reconstruction without any training.
Resumo:
3-Dimensional Diffuse Optical Tomographic (3-D DOT) image reconstruction algorithm is computationally complex and requires excessive matrix computations and thus hampers reconstruction in real time. In this paper, we present near real time 3D DOT image reconstruction that is based on Broyden approach for updating Jacobian matrix. The Broyden method simplifies the algorithm by avoiding re-computation of the Jacobian matrix in each iteration. We have developed CPU and heterogeneous CPU/GPU code for 3D DOT image reconstruction in C and MatLab programming platform. We have used Compute Unified Device Architecture (CUDA) programming framework and CUDA linear algebra library (CULA) to utilize the massively parallel computational power of GPUs (NVIDIA Tesla K20c). The computation time achieved for C program based implementation for a CPU/GPU system for 3 planes measurement and FEM mesh size of 19172 tetrahedral elements is 806 milliseconds for an iteration.
Resumo:
A deformable mirror (DM) is an important component of an adaptive optics system. It is known that an on-axis spherical/parabolic optical component, placed at an angle to the incident beam introduces defocus as well as astigmatism in the image plane. Although the former can be compensated by changing the focal plane position, the latter cannot be removed by mere optical realignment. Since the DM is to be used to compensate a turbulence-induced curvature term in addition to other aberrations, it is necessary to determine the aberrations induced by such (curved DM surface) an optical element when placed at an angle (other than 0 deg) of incidence in the optical path. To this effect, we estimate to a first order the aberrations introduced by a DM as a function of the incidence angle and deformation of the DM surface. We record images using a simple setup in which the incident beam is reflected by a 37 channel micro-machined membrane deformable mirror for various angles of incidence. It is observed that astigmatism is a dominant aberration, which was determined by measuring the difference between the tangential and sagittal focal planes. We justify our results on the basis of theoretical simulations and discuss the feasibility of using such a system for adaptive optics considering a trade-off between wavefront correction and astigmatism due to deformation. (C) 2015 Optical Society of America
Resumo:
Microfluidic/optofluidic microscopy is a versatile modality for imaging and analyzing properties of cells/particles while they are in flow. In this paper, we demonstrate the integration of fused silica microfluidics fabricated using femtosecond laser machining into optofluidic imaging systems. By using glass for the sample stage of our microscope, we have exploited its superior optical quality for imaging and bio-compatibility. By integrating these glass microfluidic devices into a custom-built bright field microscope, we have been able to image red blood cells in flow with high-throughputs and good fidelity. In addition, we also demonstrate imaging as well as detection of fluorescent beads with these microfluidic devices.
Resumo:
In this paper, we propose a new state transition based embedding (STBE) technique for audio watermarking with high fidelity. Furthermore, we propose a new correlation based encoding (CBE) scheme for binary logo image in order to enhance the payload capacity. The result of CBE is also compared with standard run-length encoding (RLE) compression and Huffman schemes. Most of the watermarking algorithms are based on modulating selected transform domain feature of an audio segment in order to embed given watermark bit. In the proposed STBE method instead of modulating feature of each and every segment to embed data, our aim is to retain the default value of this feature for most of the segments. Thus, a high quality of watermarked audio is maintained. Here, the difference between the mean values (Mdiff) of insignificant complex cepstrum transform (CCT) coefficients of down-sampled subsets is selected as a robust feature for embedding. Mdiff values of the frames are changed only when certain conditions are met. Hence, almost 50% of the times, segments are not changed and still STBE can convey watermark information at receiver side. STBE also exhibits a partial restoration feature by which the watermarked audio can be restored partially after extraction of the watermark at detector side. The psychoacoustic model analysis showed that the noise-masking ratio (NMR) of our system is less than -10dB. As amplitude scaling in time domain does not affect selected insignificant CCT coefficients, strong invariance towards amplitude scaling attacks is also proved theoretically. Experimental results reveal that the proposed watermarking scheme maintains high audio quality and are simultaneously robust to general attacks like MP3 compression, amplitude scaling, additive noise, re-quantization, etc.
Resumo:
In this paper, we propose a super resolution (SR) method for synthetic images using FeatureMatch. Existing state-of-the-art super resolution methods are learning based methods, where a pair of low-resolution and high-resolution dictionary pair are trained, and this trained pair is used to replace patches in low-resolution image with appropriate matching patches from the high-resolution dictionary. In this paper, we show that by using Approximate Nearest Neighbour Fields (ANNF), and a common source image, we can by-pass the learning phase, and use a single image for dictionary. Thus, reducing the dictionary from a collection obtained from hundreds of training images, to a single image. We show that by modifying the latest developments in ANNF computation, to suit super resolution, we can perform much faster and more accurate SR than existing techniques. To establish this claim we will compare our algorithm against various state-of-the-art algorithms, and show that we are able to achieve better and faster reconstruction without any training phase.
Resumo:
Rapid reconstruction of multidimensional image is crucial for enabling real-time 3D fluorescence imaging. This becomes a key factor for imaging rapidly occurring events in the cellular environment. To facilitate real-time imaging, we have developed a graphics processing unit (GPU) based real-time maximum a-posteriori (MAP) image reconstruction system. The parallel processing capability of GPU device that consists of a large number of tiny processing cores and the adaptability of image reconstruction algorithm to parallel processing (that employ multiple independent computing modules called threads) results in high temporal resolution. Moreover, the proposed quadratic potential based MAP algorithm effectively deconvolves the images as well as suppresses the noise. The multi-node multi-threaded GPU and the Compute Unified Device Architecture (CUDA) efficiently execute the iterative image reconstruction algorithm that is similar to 200-fold faster (for large dataset) when compared to existing CPU based systems. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
Resumo:
We propose optimal bilateral filtering techniques for Gaussian noise suppression in images. To achieve maximum denoising performance via optimal filter parameter selection, we adopt Stein's unbiased risk estimate (SURE)-an unbiased estimate of the mean-squared error (MSE). Unlike MSE, SURE is independent of the ground truth and can be used in practical scenarios where the ground truth is unavailable. In our recent work, we derived SURE expressions in the context of the bilateral filter and proposed SURE-optimal bilateral filter (SOBF). We selected the optimal parameters of SOBF using the SURE criterion. To further improve the denoising performance of SOBF, we propose variants of SOBF, namely, SURE-optimal multiresolution bilateral filter (SMBF), which involves optimal bilateral filtering in a wavelet framework, and SURE-optimal patch-based bilateral filter (SPBF), where the bilateral filter parameters are optimized on small image patches. Using SURE guarantees automated parameter selection. The multiresolution and localized denoising in SMBF and SPBF, respectively, yield superior denoising performance when compared with the globally optimal SOBF. Experimental validations and comparisons show that the proposed denoisers perform on par with some state-of-the-art denoising techniques. (C) 2015 SPIE and IS&T
Resumo:
Human detection is a complex problem owing to the variable pose that they can adopt. Here, we address this problem in sparse representation framework with an overcomplete scale-embedded dictionary. Histogram of oriented gradient features extracted from the candidate image patches are sparsely represented by the dictionary that contain positive bases along with negative and trivial bases. The object is detected based on the proposed likelihood measure obtained from the distribution of these sparse coefficients. The likelihood is obtained as the ratio of contribution of positive bases to negative and trivial bases. The positive bases of the dictionary represent the object (human) at various scales. This enables us to detect the object at any scale in one shot and avoids multiple scanning at different scales. This significantly reduces the computational complexity of detection task. In addition to human detection, it also finds the scale at which the human is detected due to the scale-embedded structure of the dictionary.
Resumo:
We address the problem of denoising images corrupted by multiplicative noise. The noise is assumed to follow a Gamma distribution. Compared with additive noise distortion, the effect of multiplicative noise on the visual quality of images is quite severe. We consider the mean-square error (MSE) cost function and derive an expression for an unbiased estimate of the MSE. The resulting multiplicative noise unbiased risk estimator is referred to as MURE. The denoising operation is performed in the wavelet domain by considering the image-domain MURE. The parameters of the denoising function (typically, a shrinkage of wavelet coefficients) are optimized for by minimizing MURE. We show that MURE is accurate and close to the oracle MSE. This makes MURE-based image denoising reliable and on par with oracle-MSE-based estimates. Analogous to the other popular risk estimation approaches developed for additive, Poisson, and chi-squared noise degradations, the proposed approach does not assume any prior on the underlying noise-free image. We report denoising results for various noise levels and show that the quality of denoising obtained is on par with the oracle result and better than that obtained using some state-of-the-art denoisers.