109 resultados para Hot springs


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using hydrodynamic simulations, we study the mass-loss due to supernova-driven outflows from Milky Way type disc galaxies, paying particular attention to the effect of the extended hot halo gas. We find that the total mass-loss at inner radii scales roughly linearly with total mass of stars formed, and that the mass loading factor at the virial radius can be several times its value at inner radii because of the swept up hot halo gas. The temperature distribution of the outflowing material in the inner region (similar to 10 kpc) is bimodal in nature, peaking at 10(5) K and 10(6.5) K, responsible for optical and X-ray emission, respectively. The contribution of cold/warm gas with temperature <= 10(5.5) K to the outflow rate within 10 kpc is approximate to 0.3-0.5. The warm mass loading factor, eta(3e5) (T <= 3 x 10(5) K) is related to the mass loading factor at the virial radius (eta(v)) as eta(v) approximate to 25 eta(3e5) (SFR/M-circle dot yr(-1))(-0.15) for a baryon fraction of 0.1 and a starburst period of 50 Myr. We also discuss the effect of multiple bursts that are separated by both short and long periods. The outflow speed at the virial radius is close to the sound speed in the hot halo, less than or similar to 200 km s(-1). We identify two `sequences' of outflowing cold gas at small scales: a fast (approximate to 500 km s(-1)) sequence, driven by the unshocked free-wind; and a slow sequence (approximate to +/- 100 km s(-1)) at the conical interface of the superwind and the hot halo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Moly-TZM was deformed at constant strain rate of 1.0 s(-1) to investigate the high strain rate deformation behaviour by microstructural and stress response change within a temperature range of 1400-1700 degrees C. To correlate the deformation behaviour with orientational change, recrystallization and recovery of the material, the microstructural investigation was undertaken using scanning electron microscopy (SEM) of electron back scattered diffraction (EBSD). Depending on the grain size and orientation spread recrystallized grains were identified and texture was calculated. Change in grain boundary characteristics with increasing temperature was determined by the misorientation angle distribution for the deformed and recrystallized grains. Subgrain coalescence and increase in subgrain size with increasing temperature was observed, indicating recrystallization not only occurred from the nucleation of the dislocation free grains in grain boundaries but also from the subgrain rotation and merging of the subgrains by annihilation of the low angle grain boundaries. Detailed studies on the evolution of texture of recrystallized grains showed continuous increase in <001> fiber texture in recrystallised grains, in contrast to a mixed fiber <001> +<111> for the deformed grains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model of reactive hot pressing of zirconium carbide (ZrCx, 0.5 < x < 1) has been constructed that incorporates four processes that occur in parallel: creep of zirconium (Zr), reaction of Zr and carbon (C), increase in volume fraction of hard phase with progressive reaction that reduces the creep of Zr and, finally, de-densification associated with volume reduction during reaction. The reasonable agreement of the model with experimental results verifies that plastic deformation of Zr is the main factor that is responsible for the low-temperature reactive densification of ZrC and that ZrC may be treated as a rigid inclusion that contributes little to densification. It predicts that densification is impaired by increasing carbon stoichiometry due to the increasing amount of starting hard phase and the greater contraction upon reaction. Additionally, the model predicts that mixtures of Zr and ZrC should show equal or better densification than Zr and C mixtures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of applied pressure on reactive hot pressing (RHP) of zirconium (Zr):graphite (C) in molar ratios of 1:0.5, 1:0.67, 1:0.8, and 1:1 was studied at 1200 degrees C for 60 min. The relative density achievable increased with increasing pressure and ranged from 99% at 4 MPa for ZrC0.5 to 93% for stoichiometric ZrC at 100 MPa. The diminishing influence of pressure on the final density with increasing stoichiometry is attributed to two causes: the decreasing initial volume fraction of the plastically deforming Zr metal which leads to the earlier formation of a contiguous, stress shielding carbide skeleton and the larger molar volume shrinkage during reaction which leads to pore formation in the final stages. A numerical model of the creep densification of a dynamically evolving microstructure predicts densities that are consistent with observations and confirm that the availability of a soft metal is primarily responsible for the achievement of such elevated densification during RHP. The ability to densify nonstoichiometric compositions like ZrC0.5 at pressures as low as 4 MPa offers an alternate route to fabricating dense nonstoichiometric carbides.