167 resultados para High temperature PIII


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nitrogen plasma exposure (NPE) effects on indium doped bulk n-CdTe are reported here. Excellent rectifying characteristics of Au/n-CdTe Schottky diodes, with an increase in the barrier height, and large reverse breakdown voltages are observed after the plasma exposure. Surface damage is found to be absent in the plasma exposed samples. The breakdown mechanism of the heavily doped Schottky diodes is found to shift from the Zener to avalanche after the nitrogen plasma exposure, pointing to a change in the doping close to the surface which was also verified by C-V measurements. The thermal stability of the plasma exposure process is seen up to a temperature of 350 degrees C, thereby enabling the high temperature processing of the samples for device fabrication. The characteristics of the NPE diodes are stable over a year implying excellent diode quality. A plausible model based on Fermi level pinning by acceptor-like states created by plasma exposure is proposed to explain the observations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transition-metal oxides at the metal-insulator boundary, especially those belonging to the perovskite family, exhibit fascinating phenomena such as insulator-metal transitions controlled by composition, high-temperature superconductivity and giant magnetoresistance (GMR), Interestingly, many of these marginally metallic oxides obey the established criteria for metallicity and have a finite density of states at the Fermi;level. The perovskite manganates exhibiting GMR, on the other hand, are unusual in that they possess very high resistivities in the 'metallic' state and show no significant density of states at the Fermi level, Marginal metallicity in oxide systems is a problem of great complexity and contemporary interest and its understanding is of crucial significance to the diverse phenomena exhibited by these materials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A detailed investigation of Y0.5Ca0.5MnO3 with a very small radius of the A-site cations ([r(A)] approximate to 1.13 Angstrom reveals the occurrence of a charge-ordering transition in the paramagnetic state, at a relatively high temperature of 260 K. The orthorhombic lattice distortion, as measured by the dimensionless index D, is large (similar to 1.75%) over the entire 300-100 K range, but the antiferromagnetic interactions become prominent only at low temperatures (< 160 K). The charge-ordering gap in Y0.5Ca0.5MnO3, measured by low-temperature vacuum tunnelling spectroscopy, is large (similar to 0.5 eV) and the charge-ordered state is unaffected by the application of a magnetic field of 6 T. The study indicates that the nature of charge-ordering in Y0.5Ca0.5MnO3 which is dominated by the cooperative Jahn-Teller effect and the associated lattice distortion is distinctly different from analogous manganates with larger [r(A)].

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have studied the low magnetic field high temperature region of the H-T phase diagram of Bi2Sr2CaCu2O8 single crystals using the technique of non-resonant rf response at a frequency of 20 MHz. With H(rf)parallel to a, H parallel to c, the isothermal magnetic field scans below T-c show that the frequency f(H) of the tank circuit decreases continuously with increase in H before saturating at H similar to H-D(T). Such a decrease in f(H) reflects increasing rf penetration into the weakly screened region between CuO bilayers. The saturation of f(H) at its lowest value for H similar to H-D(T) indicates complete rf penetration land hence the disappearance of field dependence) due to the vanishing of the screening rf currents I-rf(c) in those regions or equivalently when the phase coherence between adjacent superconducting layers vanishes. Therefore H,(T) represents the decoupling of the adjacent superconducting bilayers, and hence also a 3D to 2D decoupling transition of the vortex structure. Simultaneous monitoring of the field dependent rf power dissipation P(H) shows a maximum in dP/dH at H-D(T). The observed H-D(T) line in many crystals is in excellent agreement with the (l/t-1) behavior proposed for decoupling.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lasers are very efficient in heating localized regions and hence they find a wide application in surface treatment processes. The surface of a material can be selectively modified to give superior wear and corrosion resistance. In laser surface-melting and welding problems, the high temperature gradient prevailing in the free surface induces a surface-tension gradient which is the dominant driving force for convection (known as thermo-capillary or Marangoni convection). It has been reported that the surface-tension driven convection plays a dominant role in determining the melt pool shape. In most of the earlier works on laser-melting and related problems, the finite difference method (FDM) has been used to solve the Navier Stokes equations [1]. Since the Reynolds number is quite high in these cases, upwinding has been used. Though upwinding gives physically realistic solutions even on a coarse grid, the results are inaccurate. McLay and Carey have solved the thermo-capillary flow in welding problems by an implicit finite element method [2]. They used the conventional Galerkin finite element method (FEM) which requires that the pressure be interpolated by one order lower than velocity (mixed interpolation). This restricts the choice of elements to certain higher order elements which need numerical integration for evaluation of element matrices. The implicit algorithm yields a system of nonlinear, unsymmetric equations which are not positive definite. Computations would be possible only with large mainframe computers.Sluzalec [3] has modeled the pulsed laser-melting problem by an explicit method (FEM). He has used the six-node triangular element with mixed interpolation. Since he has considered the buoyancy induced flow only, the velocity values are small. In the present work, an equal order explicit FEM is used to compute the thermo-capillary flow in the laser surface-melting problem. As this method permits equal order interpolation, there is no restriction in the choice of elements. Even linear elements such as the three-node triangular elements can be used. As the governing equations are solved in a sequential manner, the computer memory requirement is less. The finite element formulation is discussed in this paper along with typical numerical results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present work focuses on simulation of nonlinear mechanical behaviors of adhesively bonded DLS (double lap shear) joints for variable extension rates and temperatures using the implicit ABAQUS solver. Load-displacement curves of DLS joints at nine combinations of extension rates and environmental temperatures are initially obtained by conducting tensile tests in a UTM. The joint specimens are made from dual phase (DP) steel coupons bonded with a rubber-toughened adhesive. It is shown that the shell-solid model of a DLS joint, in which substrates are modeled with shell elements and adhesive with solid elements, can effectively predict the mechanical behavior of the joint. Exponent Drucker-Prager or Von Mises yield criterion together with nonlinear isotropic hardening is used for the simulation of DLS joint tests. It has been found that at a low temperature (-20 degrees C), both Von Mises and exponent Drucker-Prager criteria give close prediction of experimental load-extension curves. However. at a high temperature (82 degrees C), Von Mises condition tends to yield a perceptibly softer joint behavior, while the corresponding response obtained using exponent Drucker-Prager criterion is much closer to the experimental load-displacement curve.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High temperature expansion is an effective tool for studying second order phase transitions. With this in mind, we have looked at a high momentum expansion for homogeneous isotropic turbulence. Combining our results with those of the inertial range, we give another view of extended self-similarity (ESS).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Banana lectin (Banlec) is a homodimeric non-glycosylated protein. It exhibits the b-prism I structure. High-temperature molecular dynamics simulations have been utilized to monitor and understand early stages of thermally induced unfolding of Banlec. The present study elucidates the behavior of the dimeric protein at four different temperatures and compares the structural and conformational changes to that of the minimized crystal structure. The process of unfolding was monitored by following the radius of gyration, the rms deviation of each residue, change in relative solvent accessibility and the pattern of inter- and intra-subunit interactions. The overall study demonstrates that the Banlec dimer is a highly stable structure, and the stability is mostly contributed by interfacial interactions. It maintains its overall conformation during high-temperature (400–500 K) simulations, with only the unstructured loop regions acquiring greater momentum under such condition. Nevertheless, at still higher temperatures (600 K) the tertiary structure is gradually lost which later extends to loss of secondary structural elements. The pattern of hydrogen bonding within the subunit and at the interface across different stages has been analyzed and has provided rationale for its intrinsic high stability.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ceramic samples of SrBi2Ta2O9 (SBT) were prepared by the solid state reaction method with a view to study their electrical properties. Reasons as to why SBT shows better fatigue endurance than conventional perovskites like Pb(Zr, Ti)O-3 are looked into. Complex impedance spectroscopy (CIS) was used as a tool to do so. CIS data was acquired over the temperature range from room temperature to 500 degrees C over a wide range of frequencies. Electrical conductivity data indicates that the conductivity in SBT is essentially due to oxygen vacancies and the activation energy for conduction in the high temperature region was found to be 0.95 eV. CIS was used to separate out the bulk and the interfacial contributions to complex impedance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The standard free energies of formation of CaO derived from a variety of high-temperature equilibrium measurements made by seven groups of experimentalists are significantly different from those given in the standard compilations of thermodynamic data. Indirect support for the validity of the compiled data comes from new solid-state electrochemical measurements using single-crystal CaF2 and SrF2 as electrolytes. The change in free energy for the following reactions are obtained: CaO + MgF2 --> MgO + CaF2 Delta G degrees = -68,050 -2.47 T(+/-100) J mol(-1) SrO + CaF2 --> SrF2 + CaO Delta G degrees = -35,010 + 6.39 T (+/-80) J mol(-1) The standard free energy changes associated with cell reactions agree with data in standard compilations within +/- 4 kJ mol(-1). The results of this study do not support recent suggestions for a major revision in thermodynamic data for CaO.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We show that the results of Lüty and Ortiz-Lopez relating the cyanide reorientation rates to the high-temperature phase diagrams of alkali-halide-alkali-cyanide mixed crystals can be understood within simple mean-field theory.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The high temperature phase transformation of hydrazonium sulfate, N2H6SO4 has been studied using DSC. The enthalpy of phase transition is found to be 3.63 ± 0.1 kJ mole−1. The phase transition temperature is found to decrease with the increase of particle size. It appears that the strain energy and not surface energy, is responsible for the phase transformation. The molar volume of the salt increases during the transformation as found by the dilatometric experiment involving percentage of linear thermal expansion. On cooling, the transformation from the high temperature modification to orthorhombic form is incomplete and extends over a wide range of temperature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Infrared correlation functions, have been obtained from the analysis of band shapes of the 1400 cm−1 bending mode of NH4Cl, NH4Br and NH4I in both the Pm3m and Fm3m phases. The NH 4 + ion seems to undergo relatively free rotation in the high temperature Fm3m phases of these halides.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Results of Raman spectroscopic studies of (NH4)2ZnBr4 crystal in the spectral range from 20-250 cm-1 and over a range of temperature from 90K to 440K covering the low temperature ferroelectric and high temperature incommensurate phases are presented. The plots of the integrated areas and peak heights of the strong Raman lines versus temperature show anomalous behaviour near the two phase transitions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The changes in the tensile properties and fracture mode brought about by heat treatment of Fe-12Cr-6Al ferritic stainless steel have been studied. A favourable combination of high strength and good ductility is obtained by heating the material at 1370 K for 2 h followed by a water quench. The high-temperature treatment results in carbide dissolution as well as an increase in the grain size. The mechanism of strengthening has been evaluated from the apparent activation energy (28 kJ mol–1) and is identified to be the unpinning of dislocations from the atmosphere of carbon atoms. As the heat-treatment temperature is increased, the fracture behaviour changes from ductile to brittle mode and this is related to the changes in grain size and friction stress.