214 resultados para Gaussian functions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical expression for the LL(T) decomposition for the Gaussian Toeplitz matrix with elements T(ij) = [1/(2-pi)1/2-sigma] exp[-(i - j)2/2-sigma-2] is derived. An exact expression for the determinant and bounds on the eigenvalues follows. An analytical expression for the inverse T-1 is also derived.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some conventional finite elements suffer from drawbacks, such as shear locking, membrane locking, etc. To overcome them researchers have developed various techniques, termed as tricks by some and variational crimes by others. Many attempts have been made, but satisfactory explanations for why some of these techniques work have not been obtained, especially in the case of solid elements. This paper attempts a simple non-conforming solid element using assumed displacement fields which satisfy the Navier equation exactly. Its behaviour under simple loadings like bending, torsion and tension is examined and comparisons are made with existing elements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The initial motivation for this paper is to discuss a more concrete approach to an approximation theorem of Axler and Shields, which says that the uniform algebra on the closed unit disc (D) over bar generated by z and h, where h is a nowhere-holomorphic harmonic function on D that is continuous up to partial derivative D, equals C((D) over bar). The abstract tools used by Axler and Shields make harmonicity of h an essential condition for their result. We use the concepts of plurisubharmonicity and polynomial convexity to show that, in fact, the same conclusion is reached if h is replaced by h + R, where R is a non-harmonic perturbation whose Laplacian is ``small'' in a certain sense.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Violin strings are relatively short and stiff and are well modeled by Timoshenko beam theory. We use the static part of the homogeneous differential equation of violin strings to obtain new shape functions for the finite element analysis of rotating Timoshenko beams. For deriving the shape functions, the rotating beam is considered as a sequence of violin strings. The violin string shape functions depend on rotation speed and element position along the beam length and account for centrifugal stiffening effects as well as rotary inertia and shear deformation on dynamic characteristics of rotating Timoshenko beams. Numerical results show that the violin string basis functions perform much better than the conventional polynomials at high rotation speeds and are thus useful for turbo machine applications. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present investigation analyses the thermodynamic behaviour of the surfaces and adsorption as a function of temperature and composition in the Fe-S-O melts based on the Butler's equations. The calculated-values of the surface tensions exhibit an elevation or depression depending on the type of the added solute at a concentration which coincides with that already present in the system. Generally, the desorption of the solutes as a function of temperature results in an initial increase followed by a decrease in the values of the surface tension. The observations are analyzed based on the surface interaction parameters which are derived in the present research.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the distribution of residence time or equivalently that of "mean magnetization" for a family of Gaussian Markov processes indexed by a positive parameter alpha. The persistence exponent for these processes is simply given by theta=alpha but the residence time distribution is nontrivial. The shape of this distribution undergoes a qualitative change as theta increases, indicating a sharp change in the ergodic properties of the process. We develop two alternate methods to calculate exactly but recursively the moments of the distribution for arbitrary alpha. For some special values of alpha, we obtain closed form expressions of the distribution function. [S1063-651X(99)03306-1].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The velocity distribution for a vibrated granular material is determined in the dilute limit where the frequency of particle collisions with the vibrating surface is large compared to the frequency of binary collisions. The particle motion is driven by the source of energy due to particle collisions with the vibrating surface, and two dissipation mechanisms-inelastic collisions and air drag-are considered. In the latter case, a general form for the drag force is assumed. First, the distribution function for the vertical velocity for a single particle colliding with a vibrating surface is determined in the limit where the dissipation during a collision due to inelasticity or between successive collisions due to drag is small compared to the energy of a particle. In addition, two types of amplitude functions for the velocity of the surface, symmetric and asymmetric about zero velocity, are considered. In all cases, differential equations for the distribution of velocities at the vibrating surface are obtained using a flux balance condition in velocity space, and these are solved to determine the distribution function. It is found that the distribution function is a Gaussian distribution when the dissipation is due to inelastic collisions and the amplitude function is symmetric, and the mean square velocity scales as [[U-2](s)/(1 - e(2))], where [U-2](s) is the mean square velocity of the vibrating surface and e is the coefficient of restitution. The distribution function is very different from a Gaussian when the dissipation is due to air drag and the amplitude function is symmetric, and the mean square velocity scales as ([U-2](s)g/mu(m))(1/(m+2)) when the acceleration due to the fluid drag is -mu(m)u(y)\u(y)\(m-1), where g is the acceleration due to gravity. For an asymmetric amplitude function, the distribution function at the vibrating surface is found to be sharply peaked around [+/-2[U](s)/(1-e)] when the dissipation is due to inelastic collisions, and around +/-[(m +2)[U](s)g/mu(m)](1/(m+1)) when the dissipation is due to fluid drag, where [U](s) is the mean velocity of the surface. The distribution functions are compared with numerical simulations of a particle colliding with a vibrating surface, and excellent agreement is found with no adjustable parameters. The distribution function for a two-dimensional vibrated granular material that includes the first effect of binary collisions is determined for the system with dissipation due to inelastic collisions and the amplitude function for the velocity of the vibrating surface is symmetric in the limit delta(I)=(2nr)/(1 - e)much less than 1. Here, n is the number of particles per unit width and r is the particle radius. In this Limit, an asymptotic analysis is used about the Limit where there are no binary collisions. It is found that the distribution function has a power-law divergence proportional to \u(x)\((c delta l-1)) in the limit u(x)-->0, where u(x) is the horizontal velocity. The constant c and the moments of the distribution function are evaluated from the conservation equation in velocity space. It is found that the mean square velocity in the horizontal direction scales as O(delta(I)T), and the nontrivial third moments of the velocity distribution scale as O(delta(I)epsilon(I)T(3/2)) where epsilon(I) = (1 - e)(1/2). Here, T = [2[U2](s)/(1 - e)] is the mean square velocity of the particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we consider the application of belief propagation (BP) to achieve near-optimal signal detection in large multiple-input multiple-output (MIMO) systems at low complexities. Large-MIMO architectures based on spatial multiplexing (V-BLAST) as well as non-orthogonal space-time block codes(STBC) from cyclic division algebra (CDA) are considered. We adopt graphical models based on Markov random fields (MRF) and factor graphs (FG). In the MRF based approach, we use pairwise compatibility functions although the graphical models of MIMO systems are fully/densely connected. In the FG approach, we employ a Gaussian approximation (GA) of the multi-antenna interference, which significantly reduces the complexity while achieving very good performance for large dimensions. We show that i) both MRF and FG based BP approaches exhibit large-system behavior, where increasingly closer to optimal performance is achieved with increasing number of dimensions, and ii) damping of messages/beliefs significantly improves the bit error performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we consider the problem of learning an n × n kernel matrix from m(1) similarity matrices under general convex loss. Past research have extensively studied the m = 1 case and have derived several algorithms which require sophisticated techniques like ACCP, SOCP, etc. The existing algorithms do not apply if one uses arbitrary losses and often can not handle m > 1 case. We present several provably convergent iterative algorithms, where each iteration requires either an SVM or a Multiple Kernel Learning (MKL) solver for m > 1 case. One of the major contributions of the paper is to extend the well knownMirror Descent(MD) framework to handle Cartesian product of psd matrices. This novel extension leads to an algorithm, called EMKL, which solves the problem in O(m2 log n 2) iterations; in each iteration one solves an MKL involving m kernels and m eigen-decomposition of n × n matrices. By suitably defining a restriction on the objective function, a faster version of EMKL is proposed, called REKL,which avoids the eigen-decomposition. An alternative to both EMKL and REKL is also suggested which requires only an SVMsolver. Experimental results on real world protein data set involving several similarity matrices illustrate the efficacy of the proposed algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the exact one-electron propagator and spectral function of a solvable model of interacting electrons due to Schulz and Shastry. The solution previously found for the energies and wave functions is extended to give spectral functions that turn out to be computable, interesting, and nontrivial. They provide one of the few examples of cases where the spectral functions are known asymptotically as well as exactly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is to investigate the steady state response of beams under the action of random support motions. The study is of relevance in the context of earthquake response of extended land based structures such as pipelines and long span bridges, and, secondary systems such as piping networks in nuclear power plant installations. The following complicating features are accounted for in the response analysis: (a) differential support motions: this is characterized in terms of cross power spectral density functions associated with distinct support motions, (b) nonlinear support conditions, and (c) stochastically inhomogeneous stiffness and mass variations of the beam structure; questions on non-Gaussian models for these variations are considered. The method of stochastic finite elements is combined with equivalent linearization technique and Monte Carlo simulations to obtain response moments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper deals with the existence of a quadratic Lyapunov function V = x′P(t)x for an exponentially stable linear system with varying coefficients described by the vector differential equation S0305004100044777_inline1 The derivative dV/dt is allowed to be strictly semi-(F) and the locus dV/dt = 0 does not contain any arc of the system trajectory. It is then shown that the coefficient matrix A(t) of the exponentially stable sy

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fluctuating-force model is developed for representing the effect of the turbulent fluid velocity fluctuations on the particle phase in a turbulent gas–solid suspension in the limit of high Stokes number, where the particle relaxation time is large compared with the correlation time for the fluid velocity fluctuations. In the model, a fluctuating force is incorporated in the equation of motion for the particles, and the force distribution is assumed to be an anisotropic Gaussian white noise. It is shown that this is equivalent to incorporating a diffusion term in the Boltzmann equation for the particle velocity distribution functions. The variance of the force distribution, or equivalently the diffusion coefficient in the Boltzmann equation, is related to the time correlation functions for the fluid velocity fluctuations. The fluctuating-force model is applied to the specific case of a Couette flow of a turbulent particle–gas suspension, for which both the fluid and particle velocity distributions were evaluated using direct numerical simulations by Goswami & Kumaran (2010). It is found that the fluctuating-force simulation is able to quantitatively predict the concentration, mean velocity profiles and the mean square velocities, both at relatively low volume fractions, where the viscous relaxation time is small compared with the time between collisions, and at higher volume fractions, where the time between collisions is small compared with the viscous relaxation time. The simulations are also able to predict the velocity distributions in the centre of the Couette, even in cases in which the velocity distribution is very different from a Gaussian distribution.