115 resultados para Gadolinium Anomalies


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The end of the Palaeozoic is marked by two mass-extinction events during the Middle Permian (Capitanian) and the Late Permian (Changhsingian). Given similarities between the two events in geochemical signatures, such as large magnitude negative C-13 anomalies, sedimentological signatures such as claystone breccias, and the approximate contemporaneous emplacement of large igneous provinces, many authors have sought a common causal mechanism. Here, a new high-resolution continental record of the Capitanian event from Portal Mountain, Antarctica, is compared with previously published Changhsingian records of geochemical signatures of weathering intensity and palaeoclimatic change. Geochemical means of discriminating sedimentary provenance (Ti/Al, U/Th and La/Ce ratios) all indicate a common provenance for the Portal Mountain sediments and associated palaeosols, so changes spanning the Capitanian extinction represent changes in weathering intensity rather than sediment source. Proxies for weathering intensity chemical index of alteration, W and rare earth element accumulation all decline across the Capitanian extinction event at Portal Mountain, which is in contrast to the increased weathering recorded globally at the Late Permian extinction. Furthermore, palaeoclimatic proxies are consistent with unchanging or cooler climatic conditions throughout the Capitanian event, which contrasts with Changhsingian records that all indicate a significant syn-extinction and post-extinction series of greenhouse warming events. Although both the Capitanian and Changhsingian event records indicate significant redox shifts, palaeosol geochemistry of the Changhsingian event indicates more reducing conditions, whereas the new Capitanian record of reduced trace metal abundances (Cr, Cu, Ni and Ce) indicates more oxidizing conditions. Taken together, the differences in weathering intensity, redox and the lack of evidence for significant climatic change in the new record suggest that the Capitanian mass extinction was not triggered by dyke injection of coal-beds, as in the Changhsingian extinction, and may instead have been triggered directly by the Emeishan large igneous province or by the interaction of Emeishan basalts with platform carbonates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work reports a detailed temperature dependent Raman study on the mixed crystals of K-0.9(NH4)(0.1)H2AsO4 (KADA) from 5K to 300K in the spectral range of 60-1200cm(-1), covering tetragonal to orthorhombic structural phase transition accompanied by paraelectric to ferroelectric transition at T-c* similar to 60K. Multiple phase transitions below transition temperature (Tc* similar to 60K) are marked by the appearance of new modes, splitting of existing ones as well as anomalies in the self-energy parameters (i.e. mode frequencies and damping coefficient) of the phonon modes. Temperature independent behaviour of damping coefficient and abrupt jump in the mode frequency of some of the internal vibrations of AsO4 tetrahedra as well as external vibrations clearly signal long range ferroelectric ordering and proton ordering below T-c*. In addition, we observed that temperature dependence of many prominent phonon modes diverges significantly from their normal anharmonic behaviour below T-c* suggesting potential coupling between pseudospins and phonons. (C) 2015 Author(s).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Temperature-dependent Raman and dielectric measurements have been carried out on (C2H5NH3)(2)CdCl4 single crystals. Raman studies reveal the presence of two structural phase transitions below room temperature at 216 K and 114 K. The phase transitions are marked by anomalies in temperature dependence of wave-number and full width half maximum (FWHM) of several vibrational modes. The transitions are also accompanied by anomalies in dielectric measurements. Raman and dielectric data indicate that the transition at 216 K is order-disorder in nature and is driven by re-orientation of organic ions, while the transition at 114 K is due to coupling between the CdCl6 octahedron and the organic chain. Further high temperature dielectric measurements reveal the presence of one more structural phase transition around 473 K across which dispersion in dielectric parameters is observed. The activation energies and relaxation time obtained for high temperature dielectric phases are characteristic of combined reorientation motions of alkyl ammonium cations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rivers of the world discharge about 36000 km 3 of freshwater into the ocean every year. To investigate the impact of river discharge on climate, we have carried out two 100 year simulations using the Community Climate System Model (CCSM3), one including the river runoff into the ocean and the other excluding it. When the river discharge is shut off, global average sea surface temperature (SST) rises by about 0.5 degrees C and the Indian Summer Monsoon Rainfall (ISMR) increases by about 10% of the seasonal total with large increase in the eastern Bay of Bengal and along the west coast of India. In addition, the frequency of occurrence of La Nina-like cooling events in the equatorial Pacific increases and the correlation between ISMR and Pacific SST anomalies become stronger. The teleconnection between the SST anomalies in the Pacific and monsoon is effected via upper tropospheric meridional temperature gradient and the North African-Asian Jet axis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The von Neumann entropy of a generic quantum state is not unique unless the state can be uniquely decomposed as a sum of extremal or pure states. Therefore one reaches the remarkable possibility that there may be many entropies for a given state. We show that this happens if the GNS representation (of the algebra of observables in some quantum state) is reducible, and some representations in the decomposition occur with non-trivial degeneracy. This ambiguity in entropy, which can occur at zero temperature, can often be traced to a gauge symmetry emergent from the non-trivial topological character of the configuration space of the underlying system. We also establish the analogue of an H-theorem for this entropy by showing that its evolution is Markovian, determined by a stochastic matrix. After demonstrating this entropy ambiguity for the simple example of the algebra of 2 x 2 matrices, we argue that the degeneracies in the GNS representation can be interpreted as an emergent broken gauge symmetry, and play an important role in the analysis of emergent entropy due to non-Abelian anomalies. We work out the simplest situation with such non-Abelian symmetry, that of an ethylene molecule.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We studied the effect of Fe doping on structural, magnetic, and dielectric properties of hexagonal ErMnO3 system. For 50% doping of Fe on Mn site in ErMnO3 modulated its crystallographic structure from hexagonal to orthorhombic phase. Accompanied with the structural phase transition in ErMnO3, the magnetic properties are effectively modified. The Fe doped samples exhibit enhancement in antiferromagnetic ordering Neel temperature (T-N) from 77K (ErMnO3) to 280K (ErFe0.5Mn0.5O3). The anomalies observed in the dielectric constant around T-N in doped ErMnO3 samples indicate the coupling between electric and magnetic order parameters. (C) 2015 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We evaluate the contribution of chiral fermions in d = 2, 4, 6, chiral bosons, a chiral gravitino like theory in d = 2 and chiral gravitinos in d = 6 to all the leading parity odd transport coefficients at one loop. This is done by using finite temperature field theory to evaluate the relevant Kubo formulae. For chiral fermions and chiral bosons the relation between the parity odd transport coefficient and the microscopic anomalies including gravitational anomalies agree with that found by using the general methods of hydrodynamics and the argument involving the consistency of the Euclidean vacuum. For the gravitino like theory in d = 2 and chiral gravitinos in d = 6, we show that relation between the pure gravitational anomaly and parity odd transport breaks down. From the perturbative calculation we clearly identify the terms that contribute to the anomaly polynomial, but not to the transport coefficient for gravitinos. We also develop a simple method for evaluating the angular integrals in the one loop diagrams involved in the Kubo formulae. Finally we show that charge diffusion mode of an ideal 2 dimensional Weyl gas in the presence of a finite chemical potential acquires a speed, which is equal to half the speed of light.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years, a low pressure transition around P similar to 3 GPa exhibited by the A(2)B(3)-type 3D topological insulators is attributed to an electronic topological transition (ETT) for which there is no direct evidence either from theory or experiments. We address this phase transition and other transitions at higher pressure in bismuth selenide (Bi2Se3) using Raman spectroscopy at pressure up to 26.2 GPa. We see clear Raman signatures of an isostructural phase transition at P similar to 2.4 GPa followed by structural transitions at similar to 10 GPa and 16 GPa. First-principles calculations reveal anomalously sharp changes in the structural parameters like the internal angle of the rhombohedral unit cell with a minimum in the c/a ratio near P similar to 3 GPa. While our calculations reveal the associated anomalies in vibrational frequencies and electronic bandgap, the calculated Z(2) invariant and Dirac conical surface electronic structure remain unchanged, showing that there is no change in the electronic topology at the lowest pressure transition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gadolinium oxide (Gd2O3) nanotubes of micron length and average diameter 100 nm have been synthesized by a controlled template-assisted electrochemical deposition technique. Structure and morphology of the synthesized nanotubes have been well characterized by using microscopy and spectroscopy analyses. HRTEM and XRD analysis revealed the crystalline planes of Gd2O3 nanotubes. Magnetic measurements of the aligned Gd2O3 nanotubes have been performed for both parallel and perpendicular orientations of the magnetic field with respect to the axis of the Gd2O3 nanotube array. Large bifurcation in ZFC-FC over the regime of 2-320 K without any signature of long range magnetic ordering confirms the presence of SPM clusters in Gd2O3 nanotubes. Also, large magnetocaloric effect is observed in the cryogenic temperature regime. No anisotropy is seen at the low temperature region but is found to evolve with temperature and becomes significant 300 K. These nanotubes can be considered as promising candidates for magnetic refrigeration at cryogenic temperature. (C) 2016 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The central part of the Himalaya (Kumaun and Garhwal Provinces of India) is noted for its prolonged seismic quiescence, and therefore, developing a longer-term time series of past earthquakes to understand their recurrence pattern in this segment assumes importance. In addition to direct observations of offsets in stratigraphic exposures or other proxies like paleoliquefaction, deformation preserved within stalagmites (speleothems) in karst system can be analyzed to obtain continuous millennial scale time series of earthquakes. The Central Indian Himalaya hosts natural caves between major active thrusts forming potential storehouses for paleoseismological records. Here, we present results from the limestone caves in the Kumaun Himalaya and discuss the implications of growth perturbations identified in the stalagmites as possible earthquake recorders. This article focuses on three stalagmites from the Dharamjali Cave located in the eastern Kumaun Himalaya, although two other caves, one of them located in the foothills, were also examined for their suitability. The growth anomalies in stalagmites include abrupt tilting or rotation of growth axes, growth termination, and breakage followed by regrowth. The U-Th age data from three specimens allow us to constrain the intervals of growth anomalies, and these were dated at 4273 +/- 410 years BP (2673-1853 BC), 2782 +/- 79 years BP (851-693 BC), 2498 +/- 117 years BP (605-371 BC), 1503 +/- 245 years BP (262-752 AD), 1346 +/- 101 years BP (563-765 AD), and 687 +/- 147 years BP (1176-1470 AD). The dates may correspond to the timings of major/great earthquakes in the region and the youngest event (1176-1470 AD) shows chronological correspondence with either one of the great medieval earthquakes (1050-1250 and 1259-1433 AD) evident from trench excavations across the Himalayan Frontal Thrust.