108 resultados para GENERALIZED WEYL ALGEBRA
Resumo:
A new method of selection of time-to-go (t(go)) for Generalized Vector Explicit Guidance (GENEX) law have been proposed in this paper. t(go) is known to be an important parameter in the control and cost function of GENEX guidance law. In this paper the formulation has been done to find an optimal value of t(go) that minimizes the performance cost. Mechanization of GENEX with this optimal t(go) reduces the lateral acceleration demand and consequently increases the range of the interceptor. This new formulation of computing t(go) comes in closed form and thus it can be implemented onboard. This new formulation is applied in the terminal phase of an surface-to-air interceptor for an angle constrained engagement. Results generated by simulation justify the use of optimal t(go).
Resumo:
Generalized spatial modulation (GSM) uses N antenna elements but fewer radio frequency (RF) chains (R) at the transmitter. In GSM, apart from conveying information bits through R modulation symbols, information bits are also conveyed through the indices of the R active transmit antennas. In this letter, we derive lower and upper bounds on the the capacity of a (N, M, R)-GSM MIMO system, where M is the number of receive antennas. Further, we propose a computationally efficient GSM encoding method and a message passing-based low-complexity detection algorithm suited for large-scale GSM-MIMO systems.
Resumo:
We first study a class of fundamental quantum stochastic processes induced by the generators of a six dimensional non-solvable Lie dagger-algebra consisting of all linear combinations of the generalized Gross Laplacian and its adjoint, annihilation operator, creation operator, conservation, and time, and then we study the quantum stochastic integrals associated with the class of fundamental quantum stochastic processes, and the quantum Ito formula is revisited. The existence and uniqueness of solution of a quantum stochastic differential equation is proved. The unitarity conditions of solutions of quantum stochastic differential equations associated with the fundamental processes are examined. The quantum stochastic calculus extends the Hudson-Parthasarathy quantum stochastic calculus. (C) 2016 AIP Publishing LLC.