111 resultados para Fractions.
Resumo:
A systematic study was done to understand the influence of volume fractions and bilayer spacings for metal/nitride multilayer coating using finite element method (FEM). An axisymmetric model was chosen to model the real situation by incorporating metal and substrate plasticity. Combinations of volume fractions and bilayer spacings were chosen for FEM analysis consistent with experimental results. The model was able to predict trends in cracking with respect to layer spacing and volume fraction. Metal layer plasticity is seen to greatly influence the stress field inside nitride. It is seen that the thicker metal induces higher tensile stresses inside nitride and hence leads to lower cracking loads. Thin metal layers < 10 nm were seen to have curved interfaces, and hence, the deformation mode was interfacial delamination in combination with edge cracking. There is an optimum seen with respect to volume fraction similar to 13% and metal layer thickness similar to 30 nm, which give maximum crack resistance.
Resumo:
The selective flotation of sphalerite from a sphalerite-galena mineral mixture has been achieved using cells and extracellular secretions of Bacillus megaterium after adaptation to the chosen minerals. The extracellular secretions obtained after thermolysis of bacterial cells adapted to sphalerite yield the highest flotation recovery of sphalerite with a selectivity index value of 24.5, in comparison to the other cellular and extra-cellular bio-reagents studied. The protein profile for the unadapted and mineral-adapted cells has been found to differ distinctly, attesting to variation in the yield and nature of extra-cellular polymeric substances (EPS). The changes induced in the bacterial cell wall components after adaptation to sphalerite or galena with respect to the contents of phosphate, uronic acid and acetylated sugars of B. megaterium have been quantified. The role of the dissolved metal ions from the minerals as well as that of the constituents of extracellular secretions in modulating the surface charge of the bacterial cells as well as the minerals under study has been confirmed using various enzymatic treatments of the bacterial cells. It has been demonstrated that the induction of additional molecular weight protein fractions as well as the higher amount of extracellular proteins and phosphate secreted after adaptation to sphalerite vis-A-vis galena are contributory factors for the selective separation of sphalerite from galena. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
An attempt to study the fluid dynamic behavior of two phase flow comprising of solid and liquid with nearly equal density in a geometrical case that has an industrial significance in theareas like processing of polymers, food, pharma ceutical, paints. In this work,crystalline silica is considered as the dispersed medium in glycerin. In the CFD analysis carried out,the two phase components are considered to be premixed homogeneously at the initial state. The flow in a cylinder that has an axially driven bi-lobe rotor, a typical blender used in polymer industry for mixing or kneading to render the multi-component mixture to homogeneous condition is considered. A viscous, incompressible, isothermal flow is considered with an assumption that the components do not undergo any physical change and the solids are rigid and mix in fully wetting conditions. Silica with a particle diameter of 0.4 mm is considered and flow is analyzed for different mixing fractions. An industry standard CFD code is used for solving 3D-RANS equations. As the outcome of the study the torque demand by the bi-lobe rotor for different mixture fractions which are estimated show a behavioral consistency to the expected physical phenomena occurring in the domain considered.
Resumo:
In the present work, a cooling channel is employed to produce semi-solid A356 alloy slurry. To understand the transport process involved, a 3D non-isothermal, multiphase volume averaging model has been developed for simulation of the semi-solid slurry generation process in the cooling channel. For simulation purpose, the three phases considered are the parent melt, the nearly spherical grains and air as separated but highly coupled interpenetrating continua. The conservation equations of mass, momentum, energy and species have been solved for each phase and the thermal and mechanical interactions (drag force) among the phases have been considered using appropriate model. The superheated liquid alloy is poured at the top of the cooling slope/channel, where specified velocity inlet boundary condition is used in the model, and allowed to flow along gravity through the channel. The melt loses its superheat and becomes semisolid up to the end of cooling channel due to the evolving -Al grains with decreasing temperature. The air phase forms a definable air/liquid melt interface, i.e. free surface, due its low density. The results obtained from the present model includes volume fractions of three different phases considered, grain evolution, grain growth rate, size and distribution of solid grains. The effect of key process variables such as pouring temperature, slope angle of the cooling channel and cooling channel wall temperature on temperature distribution, velocity distribution, grain formation and volume fraction of different phases are also studied. The results obtained from the simulations are validated by microstructure study using SEM and quantitative image analysis of the semi-solid slurry microstructure obtained from the experimental set-up.
Resumo:
Hydrogen peroxide (H2O2) level in biological samples is used as an important index in various studies. Quantification of H2O2 level in tissue fractions in presence of H2O2 metabolizing enzymes may always provide an incorrect result. A modification is proposed for the spectrofluorimetric determination of H2O2 in homovanillic acid (HVA) oxidation method. The modification was included to precipitate biological samples with cold trichloroacetic acid (TCA, 5% w/v) followed by its neutralization with K2HPO4 before the fluorimetric estimation of H2O2 is performed. TCA was used to precipitate the protein portions contained in the tissue fractions. After employing the above modification, it was observed that H2O2 content in tissue samples was >= 2 fold higher than the content observed in unmodified method. Minimum 2 h incubation of samples in reaction mixture was required for completion of the reaction. The stability of the HVA dimer as reaction product was found to be > 12 h. The method was validated by using known concentrations of H2O2 and catalase enzyme that quenches H2O2 as substrate. This method can be used efficiently to determine more accurate tissue H2O2 level without using internal standard and multiple samples can be processed at a time with additional low cost reagents such as TCA and K2HPO4.
Resumo:
The micromechanical aspects of rolling texture development in Ni-40 wt.% Co alloy during very large reductions (up to epsilon(t) = 3.9) have been studied. The alloy showed a typical Cu-type texture up to a true strain of epsilon(t) = 3; however, the texture undergoes an abrupt transition to Bs-type on further rolling to epsilon(t) approximate to 4. (The Bs-type texture, here, comprises almost equal fractions of Goss and Bs components.) Microstructural observations, at early stages, show that deformation is accommodated entirely by slip, and very little presence of deformation twinning is observed to explain the texture transition. However, at much higher reduction levels, micrographs show a high fraction of Cu-type shear bands. These bands are predominantly found in Cu-oriented grains and the crystallites inside the shear bands are preferentially oriented towards Goss, which could explain the final texture evolution. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.