476 resultados para Flow shop


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The question of the existence or otherwise of an athermal temperature region of plastic flow in metals is examined. It is suggested that the athermal region is absent in metals with large dislocation densities. Such an explanation is provoked by a fairly recent proposition that the unzipping of attractive junctions is a plausible rate-controlling mechanism at high temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theoretical study on the propagation of plane waves in the presence of a hot mean flow in a uniform pipe is presented. The temperature variation in the pipe is taken to be a linear temperature gradient along the axis. The theoretical studies include the formulation of a wave equation based on continuity, momentum, and state equation, and derivation of a general four-pole matrix, which is shown to yield the well-known transfer matrices for several other simpler cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analysis of inviscid incompressible flow in a tube of sinusoidally perturbed circular cross section with wall injection has been made. The velocity and pressure fields have been obtained. Measurements of axial velocity profiles and pressure distribution have been made in a simulated star shaped tube with wall injection. The static pressure at the star recess is found to be more than that at the star point, this feature being in conformity with the analytical result. Flow visualisation by photography of injected smoke seems to show simple diffusion rather than strong vortices in the recess.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose - The purpose of this paper is to apply lattice Boltzmann equation method (LBM) with multiple relaxation time (MRT) model, to investigate lid-driven flow in a three-dimensional (3D), rectangular cavity, and compare the results with flow in an equivalent two-dimensional (2D) cavity. Design/methodology/approach - The second-order MRT model is implemented in a 3D LBM code. The flow structure in cavities of different aspect ratios (0.25-4) and Reynolds numbers (0.01-1000) is investigated. The LBM simulation results are compared with those from numerical solution of Navier-Stokes (NS) equations and with available experimental data. Findings - The 3D simulations demonstrate that 2D models may predict the flow structure reasonably well at low Reynolds numbers, but significant differences with experimental data appear at high Reynolds numbers. Such discrepancy between 2D and 3D results are attributed to the effect of boundary layers near the side-walls in transverse direction (in 3D), due to which the vorticity in the core-region is weakened in general. Secondly, owing to the vortex stretching effect present in 3D flow, the vorticity in the transverse plane intensifies whereas that in the lateral plane decays, with increase in Reynolds number. However, on the symmetry-plane, the flow structure variation with respect to cavity aspect ratio is found to be qualitatively consistent with results of 2D simulations. Secondary flow vortices whose axis is in the direction of the lid-motion are observed; these are weak at low. Reynolds numbers, but become quite strong at high Reynolds numbers. Originality/value - The findings will be useful in the study of variety of enclosed fluid flows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The steady MHD mixed convection flow of a viscoelastic fluid in the vicinity of two-dimensional stagnation point with magnetic field has been investigated under the assumption that the fluid obeys the upper-convected Maxwell (UCM) model. Boundary layer theory is used to simplify the equations of motion. induced magnetic field and energy which results in three coupled non-linear ordinary differential equations which are well-posed. These equations have been solved by using finite difference method. The results indicate the reduction in the surface velocity gradient, surface heat transfer and displacement thickness with the increase in the elasticity number. These trends are opposite to those reported in the literature for a second-grade fluid. The surface velocity gradient and heat transfer are enhanced by the magnetic and buoyancy parameters. The surface heat transfer increases with the Prandtl number, but the surface velocity gradient decreases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The velocity profile in turbulent pipe flow is usually divided into two regions, a wall or inner region and a core or outer region. For the inner region, the viscosity and wall shear stress are the important parameters governing the velocity distribution whereas for the outer region, the wall reduces the velocity below the maximum velocity independent of viscosity. In the present work, a velocity model is proposed for turbulent flow in the wall region of a pipe covering the entire transition from smooth to rough flows. Coupling this model for the wall region with the power law velocity model for the core region, an equation for the friction factor is obtained. The model constants are evaluated by using Nikuradse's experiments in the fully smooth and rough turbulent flows. The model shows good agreement with the friction factor and the velocity profiles obtained by Nikuradse for the transition region of turbulent flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transient natural convection flow on a heated cylinder buried in a semi-infinite liquid-saturated porous medium has been studied. The unsteadiness in the problem arises due to the cylinder which is heated (cooled) suddenly and then maintained at that temperature. The coupled partial differential equations governing the flow and heat transfer are cast into stream function-temperature formulation, and the solutions are obtained from the initial time to the time when steady state is reached. The heat transfer is found to change significantly with increasing time in a small time interval immediately after the start of the impulsive change, and steady state is reached after some time. The average Nusselt number is found to increase with Rayleigh number When the surface of the cylinder is suddenly cooled, there is a change in the direction of the heat transfer in a small time interval immediately after the start of the impulsive change in the surface temperature;however when the surface temperature is suddenly increased, no such phenomenon is observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate viscous two-temperature accretion disc flows around rotating black holes. We describe the global solution of accretion flows with a sub-Keplerian angular momentum profile, by solving the underlying conservation equations including explicit cooling processes self-consistently. Bremsstrahlung, synchrotron and inverse Comptonization of soft photons are considered as possible cooling mechanisms. We focus on the set of solutions for sub-Eddington, Eddington and super-Eddington mass accretion rates around Schwarzschild and Kerr black holes with a Kerr parameter of 0.998. It is found that the flow, during its infall from the Keplerian to sub-Kepleria transition region to the black hole event horizon, passes through various phases of advection: the general advective paradigm to the radiatively inefficient phase, and vice versa. Hence, the flow governs a much lower electron temperature similar to 10(8)-10(9.5) K, in the range of accretion rate in Eddington units 0.01 less than or similar to (M) over dot less than or similar to 100, compared to the hot protons of temperature similar to 10(10.2)-10(11.8) K. Therefore, the solution may potentially explain the hard X-rays and gamma-rays emitted from active galactic nuclei (AGNs) and X-ray binaries. We then compare the solutions for two different regimes of viscosity. We conclude that a weakly viscous flow is expected to be cooling dominated, particularly at the inner region of the disc, compared to its highly viscous counterpart, which is radiatively inefficient. With all the solutions in hand, we finally reproduce the observed luminosities of the underfed AGNs and quasars (e. g. Sgr A*) to ultraluminous X-ray sources (e. g. SS433), at different combinations of input parameters, such as the mass accretion rate and the ratio of specific heats. The set of solutions also predicts appropriately the luminosity observed in highly luminous AGNs and ultraluminous quasars (e. g. PKS 0743-67).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multielectrode neurophysiological recording and high-resolution neuroimaging generate multivariate data that are the basis for understanding the patterns of neural interactions. How to extract directions of information flow in brain networks from these data remains a key challenge. Research over the last few years has identified Granger causality as a statistically principled technique to furnish this capability. The estimation of Granger causality currently requires autoregressive modeling of neural data. Here, we propose a nonparametric approach based on widely used Fourier and wavelet transforms to estimate both pairwise and conditional measures of Granger causality, eliminating the need of explicit autoregressive data modeling. We demonstrate the effectiveness of this approach by applying it to synthetic data generated by network models with known connectivity and to local field potentials recorded from monkeys performing a sensorimotor task.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, spatial variability modeling of soil parameters using random field theory has gained distinct importance in geotechnical analysis. In the present Study, commercially available finite difference numerical code FLAC 5.0 is used for modeling the permeability parameter as spatially correlated log-normally distributed random variable and its influence on the steady state seepage flow and on the slope stability analysis are studied. Considering the case of a 5.0 m high cohesive-frictional soil slope of 30 degrees, a range of coefficients of variation (CoV%) from 60 to 90% in the permeability Values, and taking different values of correlation distance in the range of 0.5-15 m, parametric studies, using Monte Carlo simulations, are performed to study the following three aspects, i.e., (i) effect ostochastic soil permeability on the statistics of seepage flow in comparison to the analytic (Dupuit's) solution available for the uniformly constant permeability property; (ii) strain and deformation pattern, and (iii) stability of the given slope assessed in terms of factor of safety (FS). The results obtained in this study are useful to understand the role of permeability variations in slope stability analysis under different slope conditions and material properties. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theoretical studies have been carried out to examine internal flow choking in the inert simulators of a dual-thrust motor. Using a two-dimensional k-omega turbulence model, detailed parametric studies have been carried out to examine aerodynamic choking and the existence of a fluid throat at the transition region during the startup transient of dual-thrust motors. This code solves standard k-omega turbulence equations with shear flow corrections using a coupled second-order-implicit unsteady formulation. In the numerical study, a fully implicit finite volume scheme of the compressible, Reynolds-averaged, Navier-Stokes equations is employed. It was observed that, at the subsonic inflow conditions, there is a possibility of the occurrence of internal flow choking in dual-thrust motors due to the formation of a fluid throat at the beginning of the transition region induced by area blockage caused by boundary-layer-displacement thickness. It has been observed that a 55% increase in the upstream port area of the dual-thrust motor contributes to a 25% reduction in blockage factor at the transition region, which could negate the internal How choking and supplement with an early choking of the dual-thrust motor nozzle. If the height of the upstream port relative to the motor length is too small, the developing boundary layers from either side of the port can interact, leading to a choked,flow. On the other hand, if the developing boundary layers are far enough apart, then choking does not occur. The blockage factor is greater in magnitude for the choked case than for the unchoked case. More tangible explanations are presented in this paper for the boundary-layer blockage and the internal flow choking in dual-thrust motors, which hitherto has been unexplored.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dimensional analysis using π-theorem is applied to the variables associated with plastic deformation. The dimensionless groups thus obtained are then related and rewritten to obtain the constitutive equation. The constants in the constitutive equation are obtained using published flow stress data for carbon steels. The validity of the constitutive equation is tested for steels with up to 1.54 wt%C at temperatures: 850–1200 °C and strain rates: 6 × 10−6–2 × 10−2 s−1. The calculated flow stress agrees favorably with experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An aeration process in ail activated sludge plant is a continuous-flow system. In this system, there is a steady input flow (flow from the primary clarifier or settling tank with some part from the secondary clarifier or secondary settling tank) and output flow connection to the secondary clarifier or settling tank. The experimental and numerical results obtained through batch systems can not be relied on and applied for the designing of a continuous aeration tank. In order to scale up laboratory results for field application, it is imperative to know the geometric parameters of a continuous system. Geometric parameters have a greater influence on the mass transfer process of surface aeration systems. The present work establishes the optimal geometric configuration of a continuous-flow surface aeration system. It is found that the maintenance of these optimal geometric parameters systems result in maximum aeration efficiency. By maintaining the obtained optimal geometric parameters, further experiments are conducted in continuous-flow surface aerators with three different sizes in order to develop design curves correlating the oxygen transfer coefficient and power number with the rotor speed. The design methodology to implement the presently developed optimal geometric parameters and correlation equations for field application is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context sensitive pointer analyses based on Whaley and Lam’s bddbddb system have been shown to scale to large Java programs. We provide a technique to incorporate flow sensitivity for Java fields into one such analysis and obtain an escape analysis based on it. First, we express an intraprocedural field flow sensitive analysis, using Fink et al.’s Heap Array SSA form in Datalog. We then extend this analysis interprocedurally by introducing two new φ functions for Heap Array SSA Form and adding deduction rules corresponding to them. Adding a few more rules gives us an escape analysis. We describe two types of field flow sensitivity: partial (PFFS) and full (FFFS), the former without strong updates to fields and the latter with strong updates. We compare these analyses with two different (field flow insensitive) versions of Whaley-Lam analysis: one of which is flow sensitive for locals (FS) and the other, flow insensitive for locals (FIS). We have implemented this analysis on the bddbddb system while using the SOOT open source framework as a front end. We have run our analysis on a set of 15 Java programs. Our experimental results show that the time taken by our field flow sensitive analyses is comparable to that of the field flow insensitive versions while doing much better in some cases. Our PFFS analysis achieves average reductions of about 23% and 30% in the size of the points-to sets at load and store statements respectively and discovers 71% more “caller-captured” objects than FIS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Well injection replenishes depleting water levels in a well field. Observation well water levels some distance away from the injection well are the indicators of the success of a well injection program. Simulation of the observation well response, located a few tens of meters from the injection well, is likely to be affected by the effects of nonhomogeneous medium, inclined initial water table, and aquifer clogging. Existing algorithms, such as the U.S. Geological Survey groundwater flow software MODFLOW, are capable of handling the first two conditions, whereas time-dependent clogging effects are yet to be introduced in the groundwater flow models. Elsewhere, aquifer clogging is extensively researched in theory of filtration; scope for its application in a well field is a potential research problem. In the present paper, coupling of one such filtration theory to MODFLOW is introduced. Simulation of clogging effects during “Hansol” well recharge in the parts of western India is found to be encouraging.