135 resultados para Flavor Problem
Resumo:
Motivated by the idea of designing a structure for a desired mode shape, intended towards applications such as resonant sensors, actuators and vibration confinement, we present the inverse mode shape problem for bars, beams and plates in this work. The objective is to determine the cross-sectional profile of these structures, given a mode shape, boundary condition and the mass. The contribution of this article is twofold: (i) A numerical method to solve this problem when a valid mode shape is provided in the finite element framework for both linear and nonlinear versions of the problem. (ii) An analytical result to prove the uniqueness and existence of the solution in the case of bars. This article also highlights a very important question of the validity of a mode shape for any structure of given boundary conditions.
Resumo:
We consider a visual search problem studied by Sripati and Olson where the objective is to identify an oddball image embedded among multiple distractor images as quickly as possible. We model this visual search task as an active sequential hypothesis testing problem (ASHT problem). Chernoff in 1959 proposed a policy in which the expected delay to decision is asymptotically optimal. The asymptotics is under vanishing error probabilities. We first prove a stronger property on the moments of the delay until a decision, under the same asymptotics. Applying the result to the visual search problem, we then propose a ``neuronal metric'' on the measured neuronal responses that captures the discriminability between images. From empirical study we obtain a remarkable correlation (r = 0.90) between the proposed neuronal metric and speed of discrimination between the images. Although this correlation is lower than with the L-1 metric used by Sripati and Olson, this metric has the advantage of being firmly grounded in formal decision theory.
Resumo:
The n-interior point variant of the Erdos-Szekeres problem is to show the following: For any n, n-1, every point set in the plane with sufficient number of interior points contains a convex polygon containing exactly n-interior points. This has been proved only for n-3. In this paper, we prove it for pointsets having atmost logarithmic number of convex layers. We also show that any pointset containing atleast n interior points, there exists a 2-convex polygon that contains exactly n-interior points.
Resumo:
In this paper, we study the asymptotic behavior of an optimal control problem for the time-dependent Kirchhoff-Love plate whose middle surface has a very rough boundary. We identify the limit problem which is an optimal control problem for the limit equation with a different cost functional.
Resumo:
We have conceived a supersymmetric Type II seesaw model at TeV scale, which has some additional particles consisting of scalar and fermionic triplet Higgs states, whose masses are around a few hundred GeV. In this particular model, we have studied constraints on the masses of triplet states arising from the lepton flavor violating (LFV) processes, such as mu -> 3e and mu -> e gamma. We have analyzed the implications of these constraints on other observable quantities such as the muon anomalous magnetic moment and the decay patterns of scalar triplet Higgses. Scalar triplet Higgs states can decay into leptons and into supersymmetric fields. We have found that the constraints from LFV can affect these various decay modes.
Resumo:
In view of the recent measurement of the reactor mixing angle theta(13) and updated limit on BRd(mu -> e gamma) by the MEG experiment, we reexamine the charged lepton flavor violations in a framework of the supersymmetric type II seesaw mechanism. The supersymmetric type II seesaw predicts a strong correlation between BR(mu -> e gamma) and BR(tau -> mu gamma) mainly in terms of the neutrino mixing angles. We show that such a correlation can be determined accurately after the measurement of theta(13). We compute different factors that can affect this correlation and show that the minimal supergravity-like scenarios, in which slepton masses are taken to be universal at the high scale, predict 3.5 <= BR(tau -> mu gamma)/= BR(mu -> e gamma) <= 30 for normal hierarchical neutrino masses. Any experimental indication of deviation from this prediction would rule out the minimal models of the supersymmetric type II seesaw. We show that the current MEG limit puts severe constraints on the light sparticle spectrum in the minimal supergravity model if the seesaw scale lies within 10(13)-10(15) GeV. It is shown that these constraints can be relaxed and a relatively light sparticle spectrum can be obtained in a class of models in which the soft mass of a triplet scalar is taken to be nonuniversal at the high scale.
Resumo:
We consider the Randall-Sundrum (RS) setup to be a theory of flavor, as an alternative to Froggatt-Nielsen models instead of as a solution to the hierarchy problem. The RS framework is modified by taking the low-energy brane to be at the grand unified theory (GUT) scale. This also alleviates constraints from flavor physics. Fermion masses and mixing angles are fit at the GUT scale. The ranges of the bulk mass parameters are determined using a chi(2) fit taking into consideration the variation in O(1) parameters. In the hadronic sector, the heavy top quark requires large bulk mass parameters localizing the right-handed top quark close to the IR brane. Two cases of neutrino masses are considered: (a) Planck scale lepton number violation and (b) Dirac neutrino masses. Contrary to the case of weak scale RS models, both these cases give reasonable fits to the data, with the Planck scale lepton number violation fitting slightly better compared to the Dirac case. In the supersymmetric version, the fits are not significantly different except for the variation in tan beta. If the Higgs superfields and the supersymmetry breaking spurion are localized on the same brane, then the structure of the sfermion masses are determined by the profiles of the zero modes of the hypermultiplets in the bulk. Trilinear terms have the same structure as the Yukawa matrices. The resultant squark spectrum is around similar to 2-3 TeV required by the light Higgs mass to be around 125 GeV and to satisfy the flavor violating constraints.
Exact internal controllability for a hyperbolic problem in a domain with highly oscillating boundary
Resumo:
In this paper, by using the Hilbert Uniqueness Method (HUM), we study the exact controllability problem described by the wave equation in a three-dimensional horizontal domain bounded at the bottom by a smooth wall and at the top by a rough wall. The latter is assumed to consist in a plane wall covered with periodically distributed asperities whose size depends on a small parameter epsilon > 0, and with a fixed height. Our aim is to obtain the exact controllability for the homogenized equation. In the process, we study the asymptotic analysis of wave equation in two setups, namely solution by standard weak formulation and solution by transposition method.
Resumo:
The random eigenvalue problem arises in frequency and mode shape determination for a linear system with uncertainties in structural properties. Among several methods of characterizing this random eigenvalue problem, one computationally fast method that gives good accuracy is a weak formulation using polynomial chaos expansion (PCE). In this method, the eigenvalues and eigenvectors are expanded in PCE, and the residual is minimized by a Galerkin projection. The goals of the current work are (i) to implement this PCE-characterized random eigenvalue problem in the dynamic response calculation under random loading and (ii) to explore the computational advantages and challenges. In the proposed method, the response quantities are also expressed in PCE followed by a Galerkin projection. A numerical comparison with a perturbation method and the Monte Carlo simulation shows that when the loading has a random amplitude but deterministic frequency content, the proposed method gives more accurate results than a first-order perturbation method and a comparable accuracy as the Monte Carlo simulation in a lower computational time. However, as the frequency content of the loading becomes random, or for general random process loadings, the method loses its accuracy and computational efficiency. Issues in implementation, limitations, and further challenges are also addressed.
Resumo:
The n-interior-point variant of the Erdos Szekeres problem is the following: for every n, n >= 1, does there exist a g(n) such that every point set in the plane with at least g(n) interior points has a convex polygon containing exactly n interior points. The existence of g(n) has been proved only for n <= 3. In this paper, we show that for any fixed r >= 2, and for every n >= 5, every point set having sufficiently large number of interior points and at most r convex layers contains a subset with exactly n interior points. We also consider a relaxation of the notion of convex polygons and show that for every n, n >= 1, any point set with at least n interior points has an almost convex polygon (a simple polygon with at most one concave vertex) that contains exactly n interior points. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
After a brief discussion of the history of the problem, we propose a generalization of the map coloring problem to higher dimensions.
Resumo:
Due to rapid improvements in on-board instrumentation and atmospheric observation systems, in most cases, aircraft are able to steer clear of regions of adverse weather. However, they still encounter unexpected bumpy flight conditions in regions away from storms and clouds. This is the phenomenon of clear air turbulence (CAT), which has been a challenge to our understanding as well as efforts at prediction. While most of such cases result in mild discomfort, a few cases can be violent leading to serious injuries to passengers and damage to the aircraft. The underlying physical mechanisms have been sought to be explained in terms of fluid dynamic instabilities and waves in the atmosphere. The main mechanisms which have been proposed are: (i) Kelvin-Helmholtz instability of shear layers, (ii) waves generated from flow over mountains, (iii) inertia-gravity waves from clouds and other sources, (iv) spontaneous imbalance theory and (v) horizontal vortex tubes. This has also undergone a change over the years. We present an overview of the mechanisms proposed and their implications for prediction.
Resumo:
Homogenization and error analysis of an optimal interior control problem in the framework of Stokes' system, on a domain with rapidly oscillating boundary, are the subject matters of this article. We consider a three dimensional domain constituted of a parallelepiped with a large number of rectangular cylinders at the top of it. An interior control is applied in a proper subdomain of the parallelepiped, away from the oscillating volume. We consider two types of functionals, namely a functional involving the L-2-norm of the state variable and another one involving its H-1-norm. The asymptotic analysis of optimality systems for both cases, when the cross sectional area of the rectangular cylinders tends to zero, is done here. Our major contribution is to derive error estimates for the state, the co-state and the associated pressures, in appropriate functional spaces.
Resumo:
In this paper, we consider the setting of the pattern maximum likelihood (PML) problem studied by Orlitsky et al. We present a well-motivated heuristic algorithm for deciding the question of when the PML distribution of a given pattern is uniform. The algorithm is based on the concept of a ``uniform threshold''. This is a threshold at which the uniform distribution exhibits an interesting phase transition in the PML problem, going from being a local maximum to being a local minimum.
Resumo:
This paper attempts to unravel any relations that may exist between turbulent shear flows and statistical mechanics through a detailed numerical investigation in the simplest case where both can be well defined. The flow considered for the purpose is the two-dimensional (2D) temporal free shear layer with a velocity difference Delta U across it, statistically homogeneous in the streamwise direction (x) and evolving from a plane vortex sheet in the direction normal to it (y) in a periodic-in-x domain L x +/-infinity. Extensive computer simulations of the flow are carried out through appropriate initial-value problems for a ``vortex gas'' comprising N point vortices of the same strength (gamma = L Delta U/N) and sign. Such a vortex gas is known to provide weak solutions of the Euler equation. More than ten different initial-condition classes are investigated using simulations involving up to 32 000 vortices, with ensemble averages evaluated over up to 10(3) realizations and integration over 10(4)L/Delta U. The temporal evolution of such a system is found to exhibit three distinct regimes. In Regime I the evolution is strongly influenced by the initial condition, sometimes lasting a significant fraction of L/Delta U. Regime III is a long-time domain-dependent evolution towards a statistically stationary state, via ``violent'' and ``slow'' relaxations P.-H. Chavanis, Physica A 391, 3657 (2012)], over flow time scales of order 10(2) and 10(4)L/Delta U, respectively (for N = 400). The final state involves a single structure that stochastically samples the domain, possibly constituting a ``relative equilibrium.'' The vortex distribution within the structure follows a nonisotropic truncated form of the Lundgren-Pointin (L-P) equilibrium distribution (with negatively high temperatures; L-P parameter lambda close to -1). The central finding is that, in the intermediate Regime II, the spreading rate of the layer is universal over the wide range of cases considered here. The value (in terms of momentum thickness) is 0.0166 +/- 0.0002 times Delta U. Regime II, extensively studied in the turbulent shear flow literature as a self-similar ``equilibrium'' state, is, however, a part of the rapid nonequilibrium evolution of the vortex-gas system, which we term ``explosive'' as it lasts less than one L/Delta U. Regime II also exhibits significant values of N-independent two-vortex correlations, indicating that current kinetic theories that neglect correlations or consider them as O(1/N) cannot describe this regime. The evolution of the layer thickness in present simulations in Regimes I and II agree with the experimental observations of spatially evolving (3D Navier-Stokes) shear layers. Further, the vorticity-stream-function relations in Regime III are close to those computed in 2D Navier-Stokes temporal shear layers J. Sommeria, C. Staquet, and R. Robert, J. Fluid Mech. 233, 661 (1991)]. These findings suggest the dominance of what may be called the Kelvin-Biot-Savart mechanism in determining the growth of the free shear layer through large-scale momentum and vorticity dispersal.