112 resultados para Fiber optic hydrophone


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study reports a noninvasive technique for the measurement of the pulse transit time differential (PTTD) from the pulse pressure waveforms obtained at the carotid artery and radial artery using fiber Bragg grating pulse recorders (FBGPR). PTTD is defined as the time difference between the arrivals of a pulse pressure waveform at the carotid and radial arterial sites. The PTTD is investigated as an indicator of variation in the systolic blood pressure. The results are validated against blood pressure variation obtained from a Mindray Patient Monitor. Furthermore, the pulse wave velocity computed from the obtained PTTD is compared with the pulse wave velocity obtained from the color Doppler ultrasound system and is found to be in good agreement. The major advantage of the PTTD measurement via FBGPRs is that the data acquisition system employed can simultaneously acquire pulse pressure waveforms from both FBGPRs placed at carotid and radial arterial sites with a single time scale, which eliminates time synchronization complexity. (C) 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the role of optical wavelength on the photo induced strain in carbon nanotubes (CNT) is probed using a Fiber Bragg Grating (FBG), upon exposure to infrared (IR) (21 mu epsilon mW(-1)) and visible (9 mu epsilon mW(-1)) radiations. The strain sensitivity in CNT is monitored over a smaller range (10(-3) to 10(-9) epsilon) by exposing to a low optical power varying in the range 10(-3) to 10(-6) W. In addition, the wavelength dependent response and recovery periods of CNT under IR (tau(rise) = 150 ms, tau(fall) = 280 ms) and visible (tau(rise) = 1.07 s, tau(fall) = 1.18 s) radiations are evaluated in detail. This study can be further extended to measure the sensitivity of nano-scale photo induced strains in nano materials and opens avenues to control mechanical actuation using various optical wavelengths.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-invasive, real-time dynamic monitoring of pressure inside a column with the aid of Fiber Bragg Grating (FBG) sensor is presented in the present work. A bare FBG sensor is adhered on the circumference of a pressure column normal to its axis, which has the ability to acquire the hoop strain induced by the pressure variation inside the column. Pressure induced hoop strain response obtained using FBG sensor is validated against the pressure measurements obtained from conventional pressure gauge. Further, a protrusion setup on the outer surface of the column has been proposed over which a secondary FBG sensor is bonded normal to its axis, in order to increase the gauge length of this FBG sensor. This is carried out in order to validate the variation in sensitivity of the protrusion bonded FBG sensor compared to the bare FBG sensor bonded over the surface. A comparative study is done between the two FBG sensors and a conventional pressure gauge in order to establish the capacity of FBG sensor obtained hoop strain response for pressure monitoring inside the column.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new chiral amphiphilic salicylideneaniline bearing a terminal pyridine was synthesized. It formed reverse vesicles in toluene. The addition of Ag+, however, reversibly transforms these reverse vesicles into left-handed nanohelices accompanied by spontaneous gel formation at room temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a simple and highly sensitive methodology for the room temperature NO2 gas sensing using reduced graphene oxide (RGO) coated clad etched fiber Bragg grating (eFBG). A significant shift (>10 pm) is observed in the reflected Bragg wavelength (lambda(B)) upon exposing RGO coated on the surface of eFBG to the NO2 gas molecules of concentration 0.5 ppm. The shift in Bragg wavelength is due to the change in the refractive index of RGO by charge transfer from the adsorbing NO2 molecules. The range of NO2 concentration is tested from 0.5 ppm to 3 ppm and the estimated time taken for 50% increase in Delta lambda(B) ranges from 20 min (for 0.5 ppm) to 6 min (for 3 ppm). (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, the design and development of a Fiber Bragg Grating (FBG) based displacement sensor package for submicron level displacement measurements are presented. A linear shift of 12.12 nm in Bragg wavelength of the FBG sensor is obtained for a displacement of 6 mm with a calibration factor of 0.495 mu m/pm. Field trials have also been conducted by comparing the FBG displacement sensor package against a conventional dial gauge, on a five block masonry prism specimen loaded using three-point bending technique. The responses from both the sensors are in good agreement, up to the failure of the masonry prism. Furthermore, from the real-time displacement data recorded using FBG, it is possible to detect the time at which early creaks generated inside the body of the specimen which then prorogate to the surface to develop visible surface cracks; the respective load from the load cell can be obtained from the inflection (stress release point) in the displacement curve. Thus the developed FBG displacement sensor package can be used to detect failures in structures much earlier and to provide an adequate time to exercise necessary action, thereby avoiding the possible disaster.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

General propagation properties and universal curves are given for double clad single mode fibers with inner cladding index higher or lower than the outer cladding index, using the parameter: inner cladding/core radii ratio. Mode cut-off conditions are also examined for the cases. It is shown that dispersion properties largely differ from the single clad single mode fiber case, leading to large new possibilities for extension of single mode operation for large wavelength tange. Paper demonstrates that how substantially we can extend the single mode operation range by using the raised inner cladding fiber. Throughout we have applied our own computations technique to find out the eigenvalue for a given modes. Detail derivations with all trivial mathematics for eigenmode equation are derived for each case. Paper also demonstrates that there is not much use of using depressed inner cladding fiber. We have also concluded that using the large inner cladding/inner core radius we can significantly increase the single mode operation range for the large wavelength region. (C) 2015 Elsevier GmbH. All rights reserved.