251 resultados para Experimental Glaucoma


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental charge density distribution in 2, 5-dichloro-1, 4-benzoquinone has been carried out using high resolution X-ray diffraction data at 90 K to quantitatively evaluate the nature of C-Cl center dot center dot center dot O=C halogen bond in molecular crystals. Additionally, the halogen bond is studied from geometrical point of view and the same has been visualized using Hirshfeld surface analysis. The obtained results from experimental charge density analysis are compared with periodic quantum calculations using B3LYP 6-31G(d,p) level of theory. The topological values at bond critical point, three-dimensional static deformation density features and electrostatic potential isosurfaces unequivocally establish the attractive nature of C-Cl center dot center dot center dot O=C halogen bond in crystalline lattice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The subsurface microhardness mapping technique of Chaudhri was utilized to determine the shape, size and distribution of plastic strain underneath conical indenters of varying semi-apex angles, alpha (55 degrees, 65 degrees and 75 degrees). Results show that the elastic-plastic boundary under the indenters is elliptical in nature, contradicting the expanding cavity model, and the ellipticity increases with alpha. The maximum plastic strain immediately under the indenter was found to decrease with increasing alpha. Complementary finite-element analysis was conducted to examine the ability of simulations to capture the experimental observations. A comparison of computational and experimental results indicates that the plastic strain distributions as well as the maximum strains immediately beneath the indenter do not match, suggesting that simulation of sharp indentation requires further detailed studies for complete comprehension. Representative strains, epsilon(r), evaluated as the volume-average strains within the elastic-plastic boundary, decrease with increasing alpha and are in agreement with those estimated by using the dimensional analysis. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the simplest IEEE 802.11 WLAN networks for which analytical models are available and seek to provide an experimental validation of these models. Our experiments include the following cases: (i) two nodes with saturated queues, sending fixed-length UDP packets to each other, and (ii) a TCP-controlled transfer between two nodes. Our experiments are based entirely on Aruba AP-70 access points operating under Linux. We report our observations on certain non-standard behavior of the devices. In cases where the devices adhere to the standards, we find that the results from the analytical models estimate the experimental data with a mean error of 3-5%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental study and optimization of Plasma Ac- tuators for Flow control in subsonic regime PRADEEP MOISE, JOSEPH MATHEW, KARTIK VENKATRAMAN, JOY THOMAS, Indian Institute of Science, FLOW CONTROL TEAM | The induced jet produced by a dielectric barrier discharge (DBD) setup is capable of preventing °ow separation on airfoils at high angles of attack. The ef-fect of various parameters on the velocity of this induced jet was studied experimentally. The glow discharge was created at atmospheric con-ditions by using a high voltage RF power supply. Flow visualization,photographic studies of the plasma, and hot-wire measurements on the induced jet were performed. The parametric investigation of the charac- teristics of the plasma show that the width of the plasma in the uniform glow discharge regime was an indication of the velocity induced. It was observed that the spanwise and streamwise overlap of the two electrodes,dielectric thickness, voltage and frequency of the applied voltage are the major parameters that govern the velocity and the extent of plasma.e®ect of the optimized con¯guration on the performance characteristics of an airfoil was studied experimentally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The compositional evolution in sputter deposited LiCoO(2) thin films is influenced by process parameters involved during deposition. The electrochemical performance of these films strongly depends on their microstructure, preferential orientation and stoichiometry. The transport process of sputtered Li and Co atoms from the LiCoO(2) target to the substrate, through Ar plasma in a planar magnetron configuration, was investigated based on the Monte Carlo technique. The effect of sputtering gas pressure and the substrate-target distance (d(st)) on Li/Co ratio, as well as, energy and angular distribution of sputtered atoms on the substrate were examined. Stable Li/Co ratios have been obtained at 5 Pa pressure and d(st) in the range 5 11 cm. The kinetic energy and incident angular distribution of Li and Co atoms reaching the substrate have been found to be dependent on sputtering pressure. Simulations were extended to predict compositional variations in films prepared at various process conditions. These results were compared with the composition of films determined experimentally using x-ray photoelectron spectroscopy (XPS). Li/Co ratio calculated using XPS was in moderate agreement with that of the simulated value. The measured film thickness followed the same trend as predicted by simulation. These studies are shown to be useful in understanding the complexities in multicomponent sputtering. (C) 2011 American Institute of Physics. doi:10.1063/1.3597829]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports reacting fluid dynamics calculations for an ammonium percholrate binder sandwich and extracts experimentally observed features including surface profiles and maximum regression rates as a function of pressure and binder thickness. These studies have been carried out by solving the two-dimensional unsteady Navier-Stokes equations with energy and species conservation equations and a kinetic model of three reaction steps (ammonium perchlorate decomposition flame, primary diffusion flame, and final diffusion flame) in the gas phase. The unsteady two-dimensional conduction equation is solved in the condensed phase. The regressing surface is unsteady and two dimensional. Computations have been carried out for a binder thickness range of 25-125 mum and a pressure range of 1.4 to 6.9 MPa. Good comparisons at several levels of detail are used to demonstrate the need for condensed-phase two-dimensional unsteady conduction and three-step gas-phase reactions. The choice of kinetic and thermodynamic parameters is crucial to good comparison with experiments. The choice of activation energy parameters for ammonium percholrate combustion has been made with stability of combustion in addition to experimentally determined values reported in literature. The choice of gas-phase parameters for the diffusion flames are made considering that (a) primary diffusion flame affects the low-pressure behavior and (b) final diffusion flame affects high-pressure behavior. The predictions include the low-pressure deflagration limit of the sandwich apart from others noted above. Finally, this study demonstrates the possibility of making meaningful comparisons with experimental observations on sandwich propellant combustion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental studies were performed to investigate the role and influence of grain movement on macrosegregation and microstructure evolution during equiaxed solidification. Casting experiments were performed with a grain-refined Al-Cu alloy in a rectangular sand mold. For the aluminum alloy studied, the equiaxed grains are lighter than the bulk melt and thus float up. Experiments were designed to investigate floatation phenomena of equiaxed grains in the presence of thermosolutal convection. Cooling curves were recorded at key locations in both the casting and the chill. Quantitative image analysis and spatial chemical analysis were performed on the solidified casting to observe the chemical and microstructural inhomogeneity created by the melt convection and solid floatation. Several notable features that can be attributed to grain movement were observed in temperature histories, macrosegregation patterns, and microstructures. In our experiments, the floatation of grains influences the thermal conditions and the overall flow direction in the casting cavity. In some cases, the induced flow resulting from the grain movement caused a flow reversal. This in turn influences the solidification direction, microstructure evolution, and the overall macrosegregation behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report here an experimental investigation for establishing and quantifying a link between the growth and decay characteristics of fiber Bragg gratings. One of the key aspects of our work is the determination of the defect energy distribution from the grating characteristics measured during their fabrication. We observe a strong correlation between the growth-based defect energy distribution and that obtained through accelerated aging experiments, paving the way for predicting the decay characteristics of fiber Bragg gratings from their growth data. Such a prediction is significant in simplifying the postfabrication steps required to enhance the thermal stability of fiber Bragg gratings. (c) 2011 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A one-dimensional, biphasic, multicomponent steady-state model based on phenomenological transport equations for the catalyst layer, diffusion layer, and polymeric electrolyte membrane has been developed for a liquid-feed solid polymer electrolyte direct methanol fuel cell (SPE- DMFC). The model employs three important requisites: (i) implementation of analytical treatment of nonlinear terms to obtain a faster numerical solution as also to render the iterative scheme easier to converge, (ii) an appropriate description of two-phase transport phenomena in the diffusive region of the cell to account for flooding and water condensation/evaporation effects, and (iii) treatment of polarization effects due to methanol crossover. An improved numerical solution has been achieved by coupling analytical integration of kinetics and transport equations in the reaction layer, which explicitly include the effect of concentration and pressure gradient on cell polarization within the bulk catalyst layer. In particular, the integrated kinetic treatment explicitly accounts for the nonhomogeneous porous structure of the catalyst layer and the diffusion of reactants within and between the pores in the cathode. At the anode, the analytical integration of electrode kinetics has been obtained within the assumption of macrohomogeneous electrode porous structure, because methanol transport in a liquid-feed SPE- DMFC is essentially a single-phase process because of the high miscibility of methanol with water and its higher concentration in relation to gaseous reactants. A simple empirical model accounts for the effect of capillary forces on liquid-phase saturation in the diffusion layer. Consequently, diffusive and convective flow equations, comprising Nernst-Plank relation for solutes, Darcy law for liquid water, and Stefan-Maxwell equation for gaseous species, have been modified to include the capillary flow contribution to transport. To understand fully the role of model parameters in simulating the performance of the DMCF, we have carried out its parametric study. An experimental validation of model has also been carried out. (C) 2003 The Electrochemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental investigation on reverse transition from turbulent to laminar flow in a two-dimensional channel was carried out. The reverse transition occurred when Reynolds number of an initially turbulent flow was reduced below a certain value by widening the duct in the lateral direction. The experiments were conducted at Reynolds numbers of 625, 865, 980 and 1250 based on half the height of the channel and the average of the mean velocity. At all these Reynolds numbers the initially turbulent mean velocity profiles tend to become parabolic. The longitudinal and vertical velocity fluctuations ($\overline{u^{\prime 2}}$ and $\overline{v^{\prime 2}}$) averaged over the height of the channel decrease exponentially with distance downstream, but $\overline{u^{\prime}v^{\prime}} $ tends to become zero at a reasonably well-defined point. During reverse transition $\overline{u^{\prime}}\overline{v^{\prime}}/\sqrt{\overline{u^{\prime 2}}}\sqrt{\overline{v^{\prime 2}}}$ also decreases as the flow moves downstream and Lissajous figures taken with u’ and v’ signals confirm this trend. There is approximate similarly between $\overline{u^{\prime 2}} $ profiles if the value of $\overline{u^{\prime 2}_{\max}} $ and the distance from the wall at which it occurs are taken as the reference scales. The spectrum of $\overline{u^{\prime 2}} $ is almost similar at all stations and the non-dimensional spectrum is exponential in wave-number. All the turbulent quantities, when plotted in appropriate co-ordinates, indicate that there is a definite critical Reynolds number of 1400±50 for reverse transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural and electronic properties of C-H center dot center dot center dot O contacts in compounds containing a formyl group are investigated from the perspective of both hydrogen bonding and dipole-dipole interactions, in a systematic and graded approach. The effects of a-substitution and self-association on the nature of the formyl H-atom are studied with the NBO and AIM methodologies. The relative dipole-dipole contributions in formyl C-H center dot center dot center dot O interactions are obtained for aldehyde dimers. The stabilities and energies of aldehyde clusters (dimer through octamer) have been examined computationally. Such studies have an implication in crystallization mechanisms. Experimental X-ray crystal structures of formaldehyde, acrolein and N-methylformamide have been determined in order to ascertain the role of C-H center dot center dot center dot O interactions in the crystal packing of formyl compounds.