236 resultados para Estuarine water
Resumo:
Wettability gradient surfaces play a significant role in control and manipulation of liquid drops. The present work deals with the analysis of water drops impacting onto the junction line between hydrophobic texture and hydrophilic smooth portions of a dual-textured substrate made using stainless steel material. The hydrophobic textured portion of the substrate comprised of unidirectional parallel groove-like and pillar-like structures of uniform dimensions. A high-speed video camera recorded the spreading and receding dynamics of impacting drops. The drop impact dynamics during the early inertia driven impact regime remains unaffected by the dual-texture feature of the substrate. A larger retraction speed of drop liquid observed on the hydrophobic portion of the substrate during the impact of low velocity drops makes the drop liquid on the higher wettability portion to advance further (secondary drop spreading). The net horizontal drop velocity towards the hydrophilic portion of the dual-textured substrate decreases with increasing drop impact velocity. The available experimental results suggest that the movement of bulk drop liquid away from the impact point during drop impact on the dual-textured substrate is larger for the impact of low inertia drops. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A reduction in the heat losses from the top of the gas holder of a biogas plant has been achieved by the simple device of a transparent cover. The heat losses thus prevented have been deployed to heat a water pond formed on the roof of the gas holder. This solar-heated water is mixed with the organic input for ‘ hot-charging ’ of the biogas plant. A thermal analysis of such a solar water-heater ‘ piggy-backing ’ on the gas holder of a biogas plant has been carried out.To test whether the advantages indicated by the thermal analysis can be realised in practice, a biogas plant of the ASTRA design was modified to incorporate a roof-top solar water-heater. The operation of such a modified plant, even under ‘ worst case ’ onditions, shows a significant improvement in the gas yield compared to the unmodified plant. Hence, the innovation reported here may lead to drastic reductions in the sizes and therefore costs of biogas plants. By making the transparent cover assume a tent-shape, the roof-top solar heater can serve the additional function of a solar still to yield distilled water. The biogas plant-cum-solar water-heater-cum-solar still described here is an example of a spatially integrated hybrid device which is extremely cost-effective.
Resumo:
Nanocrystalline Ce1-xFexO2-delta (0 <= x <= 0.45) and Ce0.65Fe0.33Pd0.02O2-delta of similar to 4 nm sizes were synthesized by a sonochemical method using diethyletriamine (DETA) as a complexing agent. Compounds were characterized by powder X-ray diffraction (XRD), X-ray photo-electron spectroscopy (XPS) and transmission electron microscopy (TEM). Ce1-xFexO2-delta (0 <= x <= 0.45) and Ce0.65Fe0.33Pd0.02O2-delta crystallize in fluorite structure where Fe is in +3, Ce is in +4 and Pd is in +2 oxidation state. Due to substitution of smaller Fe3+ ion in CeO2, lattice oxygen is activated and 33% Fe substituted CeO2 i.e. Ce0.67Fe0.33O1.835 reversibly releases 0.31O] up to 600 degrees C which is higher or comparable to the oxygen storage capacity of CeO2-ZrO2 based solid solutions (Catal. Today 2002, 74, 225-234). Due to interaction of redox potentials of Pd2+/0(0.89 V) and Fe3+/2+ (0.77 V) with Ce4+/3+ (1.61 V), Pd ion accelerates the electron transfer from Fe2+ to Ce4+ in Ce0.65Fe0.33Pd0.02O1.815, making it a high oxygen storage material as well as a highly active catalyst for CO oxidation and water gas shift reaction. The activation energy for CO oxidation with Ce0.65Fe0.33Pd0.02O1.815 is found to be as low as 38 kJ mol(-1). Ce0.67Fe0.33O1.835 and Ce0.65Fe0.33Pd0.02O1.815 have also shown high activity for the water gas shift reaction. CO conversion to CO2 is 100% H-2 specific with these catalysts and conversion rate was found to be as high 27.2 mu moles g(-1) s(-1) and the activation energy was found to be 46.4 kJ mol(-1) for Ce0.65Fe0.33Pd0.02O1.815.
Resumo:
A molecular dynamics study of model ions in water is reported. The van der Waals diameter of both the cations and anions is varied. We have carried out two sets of simulations-with and without dispersion interaction-between the ion and water. Self-diffusivity of the ions exhibits an anomalous maximum as a function of the van der Waals diameter for both these sets. This existence of a maximum in self-diffusivity when there is no dispersion interaction between the ion and the water is attributed to the attractive term from electrostatic interactions. Detailed analysis of this effect shows that the solvent shell is more strongly defined in the presence of dispersion interactions. A smaller ion exhibits biexponential decay while a single exponential decay is seen for the ion with maximum diffusivity in the self-part of the intermediate scattering function. The solvent structure around the ion appears to determine much of the dynamics of the ion. Interesting trends are seen in the activation energies and these can be understood in terms of the levitation effect. (C) 2010 American Institute of Physics. doi:10.1063/1.3481656]
Resumo:
A simple n-state configurational excitation model which takes into account the presence of weakly connected pentamer units in liquid water is proposed. The model has features of both the “continuum” and “mixture” models. Calculations based on this model satisfactorily account for the important, diagnostic thermodynamic properties of water such as the density maximum, fraction of monomers and so on.
Resumo:
A new algorithm based on signal subspace approach is proposed for localizing a sound source in shallow water. In the first instance we assumed an ideal channel with plane parallel boundaries and known reflection properties. The sound source is assumed to emit a broadband stationary stochastic signal. The algorithm takes into account the spatial distribution of all images and reflection characteristics of the sea bottom. It is shown that both range and depth of a source can be measured accurately with the help of a vertical array of sensors. For good results the number of sensors should be greater than the number of significant images; however, localization is possible even with a smaller array but at the cost of higher side lobes. Next, we allowed the channel to be stochastically perturbed; this resulted in random phase errors in the reflection coefficients. The most singular effect of the phase errors is to introduce into the spectral matrix an extra term which may be looked upon as a signal generated coloured noise. It is shown through computer simulations that the signal peak height is reduced considerably as a consequence of random phase errors.
Resumo:
An exact solution is derived for a boundary-value problem for Laplace's equation which is a generalization of the one occurring in the course of solution of the problem of diffraction of surface water waves by a nearly vertical submerged barrier. The method of solution involves the use of complex function theory, the Schwarz reflection principle, and reduction to a system of two uncoupled Riemann-Hilbert problems. Known results, representing the reflection and transmission coefficients of the water wave problem involving a nearly vertical barrier, are derived in terms of the shape function.
Resumo:
We compute the entropy and transport properties of water in the hydration layer of dipalmitoylphosphatidylcholine bilayer by using a recently developed theoretical scheme two-phase thermodynamic model, termed as 2PT method; S.-T. Lin et al., J. Chem. Phys. 119, 11792 (2003)] based on the translational and rotational velocity autocorrelation functions and their power spectra. The weights of translational and rotational power spectra shift from higher to lower frequency as one goes from the bilayer interface to the bulk. Water molecules near the bilayer head groups have substantially lower entropy (48.36 J/mol/K) than water molecules in the intermediate region (51.36 J/mol/K), which have again lower entropy than the molecules (60.52 J/mol/K) in bulk. Thus, the entropic contribution to the free energy change (T Delta S) of transferring an interface water molecule to the bulk is 3.65 kJ/mol and of transferring intermediate water to the bulk is 2.75 kJ/mol at 300 K, which is to be compared with 6.03 kJ/mol for melting of ice at 273 K. The translational diffusion of water in the vicinity of the head groups is found to be in a subdiffusive regime and the rotational diffusion constant increases going away from the interface. This behavior is supported by the slower reorientational relaxation of the dipole vector and OH bond vector of interfacial water. The ratio of reorientational relaxation time for Legendre polynomials of order 1 and 2 is approximately 2 for interface, intermediate, and bulk water, indicating the presence of jump dynamics in these water molecules. (C) 2010 American Institute of Physics. doi:10.1063/1.3494115]
Resumo:
Unsaturated clays are subject to osmotic suction gradients in geoenvironmental engineering applications and it therefore becomes important to understand the effect of these chemical concentration gradients on soil-water characteristic curves (SWCCs). This paper brings out the influence of induced osmotic suction gradient on the wetting SWCCs of compacted clay specimens inundated with sodium chloride solutions/distilled water at vertical stress of 6.25 kPa in oedometer cells. The experimental results illustrate that variations in initial osmotic suction difference induce different magnitudes of osmotic induced consolidation and osmotic consolidation strains thereby impacting the wetting SWCCs and equilibrium water contents of identically compacted clay specimens. Osmotic suction induced by chemical concentration gradients between reservoir salt solution and soil-water can be treated as an equivalent net stress component, (p(pi)) that decreases the swelling strains of unsaturated specimens from reduction in microstructural and macrostructural swelling components. The direction of osmotic flow affects the matric SWCCs. Unsaturated specimens experiencing osmotic induced consolidation and osmotic consolidation develop lower equilibrium water content than specimens experiencing osmotic swelling during the wetting path. The findings of the study illustrate the need to incorporate the influence of osmotic suction in determination of the matric SWCCs.
Resumo:
Structure of a cyclic water tetramer in channels (pores) formed by self-assembly of N6-methyl-5'-AMP center dot Na-2 molecules is described and a hypothetical model is proposed for growth of water clusters. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Low-humidity monoclinic lysozyme, resulting from a water-mediated transformation, has one of the lowest solvent contents (22% by volume) observed in a protein crystal. Its structure has been solved by the molecular replacement method and refined to an R value of 0.175 for 7684 observed reflections in the 10–1.75 Å resolution shell. 90% of the solvent in the well ordered crystals could be located. Favourable sites of hydration on the protein surface include side chains with multiple hydrogen-bonding centres, and regions between short hydrophilic side chains and the main-chain CO or NH groups of the same or nearby residues. Major secondary structural features are not disrupted by hydration. However, the free CO groups at the C terminii and, to a lesser extent, the NH groups at the N terminii of helices provide favourable sites for water interactions, as do reverse turns and regions which connect β-structure and helices. The hydration shell consists of discontinuous networks of water molecules, the maximum number of molecules in a network being ten. The substrate-binding cleft is heavily hydrated, as is the main loop region which is stabilized by water interactions. The protein molecules are close packed in the crystals with a molecular coordination number of 14. Arginyl residues are extensively involved in intermolecular hydrogen bonds and water bridges. The water molecules in the crystal are organized into discrete clusters. A distinctive feature of the clusters is the frequent occurrence of three-membered rings. The protein molecules undergo substantial rearrangement during the transformation from the native to the low-humidity form. The main-chain conformations in the two forms are nearly the same, but differences exist in the side-chain conformation. The differences are particularly pronounced in relation to Trp 62 and Trp 63. The shift in Trp 62 is especially interesting as it is also known to move during inhibitor binding.
Resumo:
The problem of pumping an aquifer in an aquifer-water table aquitard system is considered, accounting for the elastic properties of both the aquifer and the aquitard, the gravity drainage in the aquitard and treating the water table as an unknown boundary. The coupled partial differential equations are nondimensionalised, yielding three principal parameters governing the problem. The numerical solution of these equations is obtained for a wide range of parameter values. Type curves are generated and their use is illustrated through a field application.
Resumo:
Using a modified Green's function technique the two well-known basic problems of scattering of surface water waves by vertical barriers are reduced to the problem of solving a pair of uncoupled integral equations involving the “jump” and “sum” of the limiting values of the velocity potential on the two sides of the barriers in each case. These integral equations are then solved, in closed form, by the aid of an integral transform technique involving a general trigonometric kernel as applicable to the problems associated with a radiation condition.